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One of the primary yet underutilized benefits of Model Based Systems Engineering is reuse. Most users of
Model Based Systems Engineering lack the understanding of the process involved to develop a project tree
that enables use of project data in other projects to facilitate that multi-dimensional reuse. Although the
benefits speak for themselves, few practitioners fully grasp the modeling techniques, and rigor, necessary
to facilitate a model that is fully traced, modular, and reusable. The Model of Models methodology satisfies
these needs, enabling Digital Engineering on the project while realizing significant savings to project time
and cost.

BACKGROUND

Digital Engineering (DE)
Definition

Digital Engineering (DE) is defined by the Department of Defense’s (DoD) Digital Engineering
Strategy (2018, p. 3) as “an integrated digital approach that uses authoritative sets of system data and models
as a continuum across disciplines to support lifecycle activities from concept through disposal.” DE is a
major initiative being undertaken by the US Department of Defense to “modernize how the Department
designs, develops, delivers, operates, and sustains systems.” The need for this undertaking is to obtain the
following five expected benefits: informed decision making/greater insight through increased transparency;,
enhanced communication; increased understanding for greater flexibility/adaptability in design; increased
confidence that the capability will perform as expected; and increased efficiency in engineering and
acquisition practices.

Digital Engineering Strategy

Within the Digital Engineering Strategy (2018) the concepts for digital engineering are further refined
into sets of processes that must be undertaken by organizations to obtain digital compliance. However, the
key take-away from the strategy is that the current mechanisms used to architect systems, namely
document-based engineering techniques, are responsible for significant slow-down in the acquisition and
development processes which necessitates the move to model-based techniques for system design, and true
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digital engineering will involve the interconnection and synchronization of data across different engineering
tools so that the “authoritative source of truth” of the data will be established without conflict from the
conceptual design to the detailed design of the system. Developing systems in this manner will establish a
“digital thread” that can be “pulled” in any linked engineering tool which will enable better change analysis
as changes down-stream can be automatically realized up-stream by the tooling, and impacts that may be
caused by changes to up-stream artifacts can quickly be visualized.

Systems Engineering
System

A system has numerous accepted definition but for this concept it can best be understood as “a
purposeful collection of interrelated components, of difterent kinds, which work together to deliver a set of
services to the system owner and users” (Sommerville, 2016, p. 772). Systems are made of subsystems
which are used to enable the system to perform the functions assigned to it. Subsystems may be composed
of their own subsystems, components, defined in this paper as either lower-level systems which will be
procured or the combination of subsystems and components. Another important concept within Systems
Engineering is a System of Systems (SoS), which is simply a system composed of other independent but
related systems that, when brought together into an SoS, delivers greater performance than the combination
of individual systems can output alone.

SE Definition

The INCOSE Systems Engineering Handbook (2015, p. 11) defines systems engineering as “an
interdisciplinary approach and means to enable the realization of successful systems.” Eisner (2008) defines
systems engineering as “an iterative process of top-down synthesis, development, and operation of a real-
world system that satisfies, in a near optimal manner, the full range of requirements for the system.” And
finally, the Federal Aviation Administration (2006) defines systems engineering as “a discipline that
concentrates on the design and application of the whole (system) as distinct from the parts. It involves
looking at a problem in its entirety, considering all the facets and all the variables and relating the social to
the technical aspect.”

Project Performance
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From the definitions of systems engineering, we come to realize that systems engineering is a discipline
that analyzes systems as compositions of functioning parts. Performing this kind of engineering has become
essential due to the progressively increasing complexity of systems and the interconnectedness of the
systems crossing multiple engineering disciplines.

The value that systems engineering provides is that it has emerged as an effective way to manage
complexity and change (Systems Engineering Handbook, 2015). In addition, as Olivier Casse writes in
SysML in Action with Cameo Systems Modeler (2017, p. 4), benefits obtained from systems engineering
include “increase in quality by implementing the verification and validation principle as early as possible”.
Further analysis performed by Elm and Goldenson (2012) have shown that around 15% of organizations
with a lower Systems Engineering Capability (SEC) delivered higher levels of project performance versus
52% of delivering lower levels. Compare that to organizations with a higher SEC, which 57% produced
higher project performance while only 20% delivered lower levels.

FIGURE 2
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In a similar fashion, Eric Honour (2013) revealed during his study that increasing the percentage of SE
within projects results in better success up to an optimum level, above which greater SE reduces
performance. His studies showed that the optimum SE level of effort was 14% of the total program cost.
Eric was also able to determine that adding SE to a project with no SE activities provides a 7:1 return on
investment for each unit cost of SE where at the median level, the return is at 3.5:1. The evidence clearly
supports that providing thoughtful, quality systems engineering to a project tends toward producing more
favorable results.
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Problem

However, as with anything, Systems Engineering has room for improvement. As Deligatti describes in
SysML Distilled (2014, p. 2), systems engineering is “more expensive than it needs to be as you incur a
significant percentage of total life cycle cost maintaining that disjoint set of artifacts. And if you don’t pay
that cost, the artifacts become inconsistent and obsolete”. To elaborate on Deligatti’s statement, document-
based systems engineering comes with several problems, because the artifacts are disjoint; when changes
occur, it is often a manual and intensive effort to update all artifacts to reflect the change. SE becomes a
search and find of sorts for correcting translation errors and identifying inconsistencies by hand across
engineering disciplines. Adding to the tedious effort of making a change throughout all artifacts, running
an impact analysis, to understand the total cost associated with a change, has become challenging due to
the disjointedness of the artifacts, often leading to errors that propagate into the design. However, there is
a solution to this challenge which lies in Model Based Systems Engineering.

Model Based Systems Engineering (MBSE)
Definition

One major component of Digital Engineering is a foundation based on model-based systems
engineering (MBSE). The INCOSE Systems Engineering Vision 2020 (2007, p. 15) defines MBSE as “the
formalized application of modeling to support system requirements, design, analysis, verification, and
validation activities beginning in the conceptual design phase and continuing throughout the development
and later life cycle phases™. The process of performing MBSE as Friedenthal, Moore, and Steiner describe
it in A Practical Guide to SysML_(2015, p. 17), is “the output of the systems engineering activities is a
coherent model of the system (i.e. system model) that is part of the engineering baseline, and the emphasis
is placed on defining and evolving the model using model-based methods and tools.”

Benefits

Benefits of using model-based systems engineering include “increase(d) precision of the system
specification and design resulting in reduced downstream errors; improve(d) traceability between system
requirements, design, analysis, and verification information to enhance system design integrity; improve(d)
ability to maintain and evolve the system specification and design baseline throughout the system lifecycle;
support(ed) reuse across projects; and provision of a shared understanding of the system to reduce
miscommunication among the development team and other stakeholders” (Friedenthal & Oster 2017, p. 2).

Language

FIGURE 3
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MBSE is built on three main pillars, i.e. a language, a tool, and a method, see Figure 2 created by Loyd
Baker. The languages are the graphical modeling languages that are used to construct diagrams of elements
and define what the model is “saying”.

There are a few MBSE languages in the market, and each has specific purposes for its use. This paper
focuses on the Systems Modeling Language (SysML) which was jointly developed by the International
Council on Systems Engineering (INCOSE) and the Object Management Group (OMG). Due to it being
registered with the OMG, it is one of the few MBSE languages that are “standardized” in the market which
enables data transfer between tools based on common language artifacts and diagrams.

Tool

The second pillar, the tool, utilizes the language within a software context to visualize the system. There
are several tools in the market, some utilizing SysML, others with their own custom languages that do not
fully comply with a standardized language. Although a non-standardized language can enable a “stove-
piped” MBSE capability, data integration will always be at the forefront in a language that is standardized
and shared across many platforms such as SysML. Many tools will provide APIs to export data; however,
if they are compliant with a language like SysML, a standard export into the XML Metadata Interchange
(XMI) format must be a capability of the tool. This enables the data from SysML tools to be shared across
many tools, reducing the dependence on any one vendor, and ensuring that the right tools for the right job
are used.

It is important to remember that not all tools are the same; some tools are better than others and add
enhanced features to increase productivity of the workforce, and because time is money, the more time your
engineers save due to the tool-set you provide them, the more productive they become which increases their
return on investment.

Method

The third pillar, selection of the method(s), is arguably the least understood. While finite languages and
tools exist on the market, the number of processes and methodologies that can be applied to a modeling
effort are only limited by knowledge and understanding. Thankfully there are proven methodologies that
can be adapted to best fit an organization’s needs throughout the process.

A methodology is not a one-size-fits-all solution. Methodologies are a set of methods used to produce
a specific output. Different methodologies use different techniques to produce potentially different outputs,
even for the same problem. Just like when comparing object-oriented programming techniques to
functional, the first question to ask before selecting the language of use is “What are you trying to
accomplish?” Until that fundamental question can be answered, do not proceed, because this leads to
engineering blindly which is arguably a waste of an organization’s time and money. Instead, define the
expected outputs of an effort, then decide which “tool” in the engineer’s “toolbelt” is a best fit to accomplish
the task in the most efficient manner possible. This analogy directly applies to methodologies: selectively
choose the one on each program that best meet the needs of that program. However, just like integrating a
language like C++ with Java, methodologies do not necessarily integrate cleanly with one another so ensure
that consideration is factored into the methodology-making decision.

DIGITAL ENGINEERING

Concept

The concept of digital engineering as defined by the US Office of the Secretary of Defense (OSD)
focuses on the interconnection of data models across disparate tools. The vision focuses on an integrated
set of engineering tools where data can be linked, if not synchronized, across the various tools. The outcome
of this effort is what is referred to as a “digital thread” which represents a fully linked set of data that spans
multiple tools and engineering disciplines enabling the analyst to view the entire data integration. The value
of this goal is that if something must change, then the entire impact of such a change across all tools can be
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realized rapidly, enabling faster decision making that prevents uninformed/expensive decisions from being
made.

However, for the digital thread to be accomplished, specific methodologies in the respective tools must
be followed to ensure that there are no traceability gaps. Unfortunately, the existence of gaps within the
traceability of digital artifacts will manifest themselves as gaps within the digital thread, leading to breaks
within the thread, and reducing its usefulness. Therefore it is not enough that a methodology is
implemented; the chosen methodology must take into account tools and processes that enable that
traceability being described above.

FIGURE 4
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This paper introduces a novel methodology to solve this problem: the Model of Models Methodology
(MOM) for MBSE. MOM was created to increase inheritance across the model and secondly to ensure a
process that enables full traceability across the model artifacts. This traceability ensures that the digital
thread can be established throughout the model, so when the model is integrated with other engineering
tools, there will be no breaks in the thread across the MBSE portion of the tool chain.

Figure 4 provides a glimpse into the Architectural Development Process where the flow-down of the
modeling artifacts is identified relative to a system executing the DoD Acquisition Life Cycle. Although
MTSI provides a formal training in MBSE through a SysML Fundamentals Course, not everyone involved
with the MOM process will need to undertand the language to appreciate the capabilities that the
methodology provides. MOM begins with a reference architecture that produces the system-of-systems
(SoS) view of a particular operation in which the various systems that must exist in order for a particular
mission to be executed are identified. This results in systems requirements which feed the system template,
which is a logical definition of the class of system, providing all functions and components that would be
true across all potential implementations (variants) of the system. Using the concept of inheritance, the
detailed logical template will provide a black-boxed or closed system view, which can then be broken into
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specific variants of the component to produce variants of the overall system. From this point, a set of trade
studies will be conducted in the system to determine the best configuration of available components which
will create optimal set of final solutions.

At all phases, capturing the test cases early and upfront allows the verification of system requirements
later in the system life cycle. Additionally, for specific programs that need to connect to complex physics-
based simulation tools, preliminary design data will be fed into formal modeling and simulation tools which
provide results back into the architecture for further refinement.

MODEL OF MODELS METHODOLOGY

Introduction

The Model of Models (MOM) methodology is a process that can be used to produce a reusable,
modular, and fully-traced MBSE architecture. The methodology was derived by the SMEs from MTSI
based on significant analysis of commercial organizations in which they consulted to analyze the best
mechanism that could be followed to maximize reuse of artifacts across an organization. MOM is based on
the Object-Oriented Systems Engineering methodology (OOSEM) but is tailored to abstract and depict at
a logical enterprise level the key processes affecting major lifecycle threads such as acquisition, program
management, engineering (architecture development), sustainment, etc. MOM also introduces benefits at
the system/component level by facilitating reuse through the development of system/component meta-
models (aircraft, ships, tanks, vehicles, widgets, etc.) that capture the key structure and behavior and serve
as the templates from which variants are derived/designed/built.

The benefits gleaned from reuse are substantial time and money savings. Most organizations are in the
business of developing a family of products and cannot afford to start every project with SE from scratch.
Instead of rearchitecting systems each time the organization must use a component in a new
project/program, they can instead refer to the definition stored in a common component library which
enables the architectures of components, subsystems, and even full-blown systems to be reused across many
different projects and programs. This reuse substantially and effectively reduces the upfront SE workload,
exponentially increasing time and cost savings in the architectural development portion of a program. See
appendices A and B for information on how this concept is leveraged with aircraft and tank architectural
development.

The primary benefit of a modular architecture is that it enables plug-and-play with components. Each
component is made of many data element types, months to years of engineering information for that
component, and standard requirement and verification objectives for those components. Using this concept,
we can create models of all possible variants in a short time period, each based on and traced up to the
logical architecture, which enables rapid trade study analysis as each of these variants can be compared
against one another in an almost instantaneous fashion to test which are best to suite the user’s needs.

Finally, the benefits observed from full traceability is that it enables full impact analysis. For instance,
if a system-level requirement must change, we are able to follow the tree of derived requirements from the
system requirement to show them as all being potentially impacted from the source system requirement.
This enables informed decision-making for both impact and timing of a change in the system model to have
the lowest-possible impact while gaining the needed feature/benefit.

Object Oriented Systems Engineering Method (OOSEM)
Definition

“OOSEM is a top-down, scenario-driven process that uses SysML to support the analysis, specification,
design, and verification of systems. The process leverages object-oriented concepts and other modeling
techniques to help architect flexible and extensible systems that can accommodate evolving technology and
changing requirements” (Friedenthal et al. 2015, p. 417).
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FIGURE 5
OOSEM PROCESS
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The OOSEM Process, depicted above in Figure 5, is built on six main aspects: analyze needs, define
system requirements, define logical architecture, synthesize physical architecture, optimize and evaluate
alternatives, and validate and verify system. The processes to the right of the line are in a waterfall-style
fashion going in order from the analyzation of needs down into synthesizing the physical architecture in the
standard order of development, namely understand the concept first, define the functions the system will
perform, and then piece together the system that provides those functions in order to meet the requirements.
To the left of the diagonal line we find “Optimize & Evaluate Alternatives” and “Validate & Verify System”
which are intended to be performed in parallel with the steps to the right of the line.

OOSEM is an excellent process for development of systems that are object-oriented in nature such as
a large system-of-systems; it provides a very strict taxonomy-based rigor that must be followed, and due to
the top-down nature of the development effort it enables full traceability and improves impact analyses.
One disadvantage of these formal approaches is that they are conceptual in nature and should be refined
and tailored for each use to include powerful tool capabilities, like MOM’s use of component library
projects within system projects to enable reuse. Another disadvantage of strictly using the formal
methodologies is they tend to lead to monolithic models which cause the model to become extremely large,
making navigation and data management of the model arduous.

Problems Associated With Monolithic Models

As mentioned, one of the disadvantages of traditional MBSE methods is that they lead to the creation
of monolithic models. These monolithic models are difficult to navigate and manage, which often leads to
the creation of duplicate or conflicting elements. A duplicate element in an MBSE architecture contains
separate data and must be managed independently, which can lead to model inconsistency if one of the
duplicates is modified. Worse than duplicate elements, conflicting elements are a critical problem in a
model because if two elements conflict with one another, it becomes impossible for the system architecture
to meet the requirements imposed upon it, leading to invalid system architectures, which are then carried
into development. Developing the invalid system architecture leads to late-term development rework which
is costly and will most likely require a schedule slippage or missing feature in the delivered system.
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A common feature that several MBSE tools provide is a teamwork environment in which multiple team
members can work on the same model at the same time. This is a great feature, except for when a model
becomes too large for the infrastructure to sustain as each artifact and relationship is an element that is
loaded into memory, and each team member working on the model is also consuming memory. As the
model gets larger and as more members are working on the same project at the same time, the server hosting
the model will become increasingly overloaded leading to development slow-downs and inefficiencies as
features like committing the model to the server can in some cases take several hours, consuming a majority
of the working day.

Finally, monolithic models create overreach. Even with the best of intentions, if a team member makes
an unofficial update to the model which contains errors, a single source of failure is created as the model
has no way of checking for its own logical fallacies, i.e. it is only as smart as the engineers who input the
data. If all the data lives in a single model, it becomes more challenging to add permissions to the specific
model sections, enabling such users to voluntarily “contribute” to the effort without official training and
understanding of model best practices, and often times cause errors that must be repaired at a later date.

These issues can be extrapolated into a very simple formula provided below:

Result = Disaster = Shelf — Ware = Failure! (D)

The failure of an implementation of MBSE has created cultures of distrust, resistance, and objection to
the implementation of MBSE within many organizations. The method chosen can lead to inevitable
problems that will affect the entire organization. As such, a better method must be chosen.

Justification for MOM

In addition to avoiding monolithic models, there are other observations the research team has made
during their experience as consultants and contractors. The first is that most complex systems are system-
of-systems, defined by ISO/IEC/IEEE (ISO, 2019) as a “set of systems or system elements that interact to
provide a unique capability that none of the constituent systems can accomplish on its own.” Second, few
are responsible for the full development of a system from the concept to production. This leads to
architecting a system down to a finite level where components are acquired from component manufacturers.
If a component is defined earlier as a lower-level systems that will be acquired without the need for full-
decomposition to compose subsystems, then they will often be captured at the black-box level which is
used to place “the main focus on how (the System of Interest) interacts with the environment without getting
any knowledge about its internal structure and behavior” (Aleksandraviciene & Morevicius, 2018, p. 12).

The observation made above is that there is a point where systems engineers produce variants from
different combinations of components that will be evaluated against one another. This process is referred
to as trade-study analysis and is performed to determine which variants will best meet the requirements of
the system. What is interesting to note is that this concept is recursive in nature as the architects of the
components for the system develop their component as a system and will use components of their own.
This continues until getting down to the fundamental level where one is placing resistors or cutting rods.

The Methodology

Reiterating from previous sections, the Model of Models methodology was created for the purposes of
reuse, modularity, and full-traceability of MBSE model data. In addition to these fundamentals, the
qualitative benchmarks used to evaluate MOM are ease of use and a “natural” feel. MOM should not be
overly complex but rather be straight-forward to understand and it flexible for many different applications
and should naturally map to the way a system is constructed. The result of these goals increases navigability
of the architecture which improves model management and the “correctness” of the model.
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FIGURE 6
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This leads to the concept. Namely, the Model of Models methodology focuses on the creation of
component library projects which feed components into higher-level projects recursively. This creates a
hierarchy where the “model of models™ is the highest level in the overall system model, in the case of Figure
6, the “Enterprise Model”, which is used to show the integration of multiple systems into mission scenarios.
This Enterprise Model will load system A, B, and C definitions from library projects dedicated to those
specific types of systems. Within the Enterprise Model, variants will be created in the SoS level and most
analyses will be performed to determine which combination of system variants will provide the highest
success rates in mission execution. The same process is performed with System B where variants of
Component A and B are evaluated to develop the optimal system design, which will enable the system to
meet its requirements, leading to better mission performance. The process iterates at the component model
level using sub-component models, and can even apply this principle to allow software architectures to be
deployed within the systems to analyze the impact of specific software designs on the functionality of the
system.

One thing to notice is that each of the sub-projects provides elements to the higher-level project. First,
this is done to circumvent a common limitation of MBSE tools preventing circular references, which means
that a project uses a project that uses itself. Secondly, the choice to inherit up ensures that the higher-level
systems have full visibility into their fully system hierarchies. This supports full analysis of each system
and helps protect intellectual property (IP) in that only the acquirer of components can see the component
definitions, so suppliers have less to worry about IP leakage to their competitors.
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MOM Library Layout

FIGURE 7
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The Model of Models methodology uses a recursive taxonomy layout. We define the highest-level
classification of the library artifact, which is shown in the case of Figure 7 as an engine. At this level, we
all parts are created that will be true for all subclasses of the system. Creating the next tier of classification,
shown above as “External-Combustion Engine” and “Internal-Combustion Engine”, will provide the parts
and functions that are true about each subclass. Continuing through this recursive process gets to the lowest
level of taxonomy, which will inherit and refine the parts provided from the higher levels.

FIGURE 8
PHYSICAL SECTION OF THE LIBRARY
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One we have finished the logical taxonomy to the lowest classification for the type of component
needed, in this case the “4-stroke engine”, the next step is creation of variants. The model structure in the
“Physical” section of the library mirrors the logical, and at the lowest level captures the definitions of the

specific variants of the components. In this example, the variants being captured for the “4-stroke engine”
are the “BMW S58” the “F154 CG” and the “Ford 1.0-litre EcoBoost 3.5”.
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Library Component Usage

FIGURE 9
USE OF THE LOGICAL COMPONENT
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Once the components are placed in the library, we either return to the model of the system (or SoS) we
are creating, or iterate through to creation of the model for this system. For the logical section of the model,
we model down to the logical component’s usage, in our example the use of the “4-Stroke Engine” above,
which we pull in from the used engine library project. We perform the operation of creation of component
libraries, modeling of the full taxonomy down to the type of element we wish to use in our particular system,
the creation of the variants we will evaluate, and the use of these logical elements in the logical section of
our system model for each component that we need to use. The value being, once this taxonomy has been
defined, assuming the model is placed in a shared location, anybody can use these reusable components for
all future programs which will significantly reduce the amount of work required to create or enhance new
systems.

FIGURE 10
USE OF VARIANT ENGINE
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Our final step in our system model is to go through the physical system model, which inherits its
architecture from the logical system template, and redefine each of the logical components with physical
components from the library. Redefinition is done to “rename, augment, constrain, or override the redefined
members in the context of instances of the specializing classifier,” (Fakhroutinov, 2015) which in layman’s

114 American Journal of Management Vol. 20(5) 2020



terms means that we are replacing the logical definition with a specific variant. We perform this for all
components in a subsystem to create a subsystem variant. We redefine each subsystem in a system variant
with subsystem variants to create the system variant. As can be seen, this operation is intensive, so why
would anybody consider this process? The return on investment of this intensive process is that it creates
full traceability throughout the system architecture from concept through to the specific variant
implementations. Another major benefit from this process is that any changes to the library components to
add more specificity will propagate to each of the system models in which they are used, which will provide
higher fidelity in simulations, enabling better understanding when verifying that the architecture will satisfy
the requirements imposed upon it.

CONCLUSION

The Model of Models methodology was developed as an improvement on OOSEM. It was built to
provide reuse, modularity, and enable full traceability. The sub-goals of MOM are for the process to be
easy, repeatable, recursive, and to “feel natural”. The benefits this method provides are significant time
savings as soon as model elements are reused from the component libraries, reduction in difficulty of
performing impact analyses, and finally it enables ease of variant creation due to inheritance from the
rigorous taxonomy observed. The full traceability provided by MOM fully enables the core principles of
Digital Engineering ensuring that no gaps within the digital thread arise from the MBSE environment.
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APPENDIX A

FIGURE 11
INITIAL CREATION OF PROJECTS
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We begin the application of the Model of Models methodology with the concept of creation of aircratt.
On the left, red arrow, we begin by defining the aircraft. Since we are imagining we have never architected
an aircraft before, we must build the logical taxonomy of an aircraft down to the lowest-level “Fighters”,
which would inherit the full definition of an airplane, the definition of the subclass of “Combat Aircraft”
and the definition of the subclass of “Combat Aircraft”. This is all contained within the “Logical” model
within the aircraft library. We then through architecting a “Fighter” aircraft realize we need a radar and a
missile. For the radar library we follow the similar taxonomy definition process, first defining in the logical
model all subsystems and components common to all radars, further specifying this generic definition into
the electronically scanned phased-array radar, which is further defined into the “AESA Radar”. Finally, for
the Missile Library the same process is followed, first defining the taxonomy from the missile down to the
subclass of “Air-to-Air” missile down to the lowest-level subclasses of “Beyond Visual Range Missiles”
and “Within Visual Range Missiles”. The lowest-level logical components are used within the lowest-level
aircraft, i.e. a block named “Fighter” composes an “AESA Radar” block, a “Beyond Visual Range Missile”
block and a “Within Visual Range Missile” block.

Once we’ve setup the taxonomy, we proceed into variant definition. In the example, above, the first
variant of a fighter aircraft is the F-16V. This aircraft uses the specific kind of AESA radar, which is the
AN/APG-83 as well as the two missiles, the AIM-120 AMRAAM and the AIM-9X Sidewinder. The
AN/APG-83 is a kind of AESA radar, and as such inherits the definition of an AESA Radar from the logical
block contained in the logical model. The AIM-120 AMRAAM is a variant of a “Beyond Visual Range
Missile” and as such will inherit from the corresponding logical block. The AIM-9X Sidewinder is a variant
of a “Within Visual Range Missile” and likewise will inherit from the corresponding definition.

One key concept within MOM is to realize that each component in a component library is most likely
composed of parts which can be defined in their own library. This cycle of taxonomy and definition can
continue in a recursive fashion, until reaching the necessary depth for a particular project/program, but due
to the modular design of the libraries, can be further enhanced at a later date.

FIGURE 12
USE OF EXISTING LIBRARY COMPONENTS
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Figure 12 conveys what happens when we receive a task to define an F-21 model. Because the radar
library has been previously defined and because the missile library has been previously defined down to
the lowest-level logical element needed, i.e. AESA Radar, Beyond Visual Range Missile, and Within Visual
Range Missile, we don’t have to spend any time on defining the taxonomy again. Also, because the variants
of the AN/APG-83, the AIM-120 AMRAAM, and the AIM-9x Sidewinder are also directly used in the F-
21 design, no time must be spent developing the models from either of these which removes the architectural
development time of those components completely from the project, which ideally reduces the total time
the project takes and cost from the development of the F-21 model.

FIGURE 13
PARTIAL USAGE OF LIBRARY COMPONENTS
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Figure 13 depicts a situation where we receive the task to develop a model for an element that can
partially use the defined libraries. In the case of the F-35 it uses a different radar than the AN/APG-83, so
we would need to define the AN/APG-81 within our radar library, though since it is an AESA radar, no
updates must be made to the logical radar taxonomy. In addition, because the F-35 uses the same AIM-120
AMRAAM and AIM-9X Sidewinder missiles as were previously defined, no time must be spent defining
these within our missile library. As such, the only time spent would be capturing the definition of the
AN/APG-81 within our architecture, thus continuing to save time and money because of the library method.
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APPENDIX B

FIGURE 14
DEFINITION OF TANK
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Figure 14 conveys that our MOM process can be used to define any kind system, including tanks. As
mentioned in Appendix A, we start with an empty tank library where we’d classify the taxonomy of tanks
within the logical model. Each tank must have an engine and a gun, as well as undepicted components, so
we continue the thread by defining the logical taxonomy for engines, beginning at the logical definition of
an engine itself, the sub-class of “Internal Combustion Engine”, and its subclass of “Gas Turbine Engine”.
We perform the same operation for the guns where we define the logical “Gun” architecture, the subclasses
of gun, i.e. “Artillery”, “Firearm”, and “Rifle”. And then we define the subclasses of firearms which include
“Heavy Machine Gun” and “Light Machine Gun”.

We then define the variants of our system and components. We begin by defining the M1 Abrams tank
block which uses the gas turbine engine “AGT-15007, the heavy machine gun “Browning M2HB”, and the
light machine gun “M240”.

As mentioned in Appendix A, this process is recursive and can be defined through the components
making up the engine or the guns, and the components for the components making up the engine and/or the
guns, as deeply as needed.
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FIGURE 15
REUSE OF ENGINE AND GUN
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We then capture another tank, the M11IP, for which we have the convenience of reuse of the AGT-1500
engine and the Browning M2HB gun. In this case, we save time and cost that would be spent on
rearchitecting these systems by pulling them straight from our defined libraries.

FIGURE 16
PARTIAL REUSE
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Finally, we build the M109A6 Paladin. This tank uses a 2-Stroke Turbocharged Diesel Motor, which
would require additional taxonomy definition in the logical model but uses the same guns. As such, we
would spend time during the process to define the updates to the taxonomy but would require no additional
time defining the guns. As such, we continue to save time through use of the libraries, and capture a new

type and taxonomy of engine that will be used in future tank designs that require a 2-stroke turbocharged
diesel motor.
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