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Increasingly, customers expect products highly customized with reduced lead-times. Additionally, intense
geopolitical, economic and regulatory uncertainties render long lead-times increasingly risky for both
equipment suppliers and customers alike. This article presents a mass customization model called options-
based planning (OBP) which is better adapted to complex market realities than legacy production models.
A discrete event simulation examines the performance of the new model compared to legacy production
strategies. Under conditions of high market turbulence (i.e. trade wars, pandemics, etc.), the new model
allows shorter customer lead-time while maintaining the high level of customization expected of highly
valued capital equipment.
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INTRODUCTION

Capital equipment (e.g., industrial robots, MRI machines, and CNC machines) have comparatively long
build times, high design customization and are expensive (Salvador and Forza, 2004; Raturi, Meredith &
McCutcheon, 1990; Tuovila, 2019). Market disruptions (e.g. natural disasters, pandemics, financial crisis)
can affect the entire rationale for a capital equipment acquisition. A financial crisis can create even more
uncertainty than natural disasters with a known geographic epicenter because it creates widespread
uncertainty about supply and demand (Sheffi, 2015). Additionally, competitive pressure for shorter product
life requires firms to pursue both customization and responsiveness (i.e. shorter delivery time) from capital
equipment suppliers: the customization-responsiveness squeeze (C-R) (Raturi et al., 1990).
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This research introduces a new solution to the classic C-R squeeze called options-based planning
(OBP). The new model leverages the comparative stability of the demand schedule (due to customers’ long
capital expense planning timelines) while dispensing with the need to forecast volatile product design
requirements. It does this by utilizing real-options to create flexible design features that can be added when
an actual customer order arrives — similar to traditional MTO production. A real option is a right, but not
the obligation, to a course of action. For example, one could purchase a new car and have a fog lamp added
at the dealer; this design parameter would not have had to be committed at the start of the build cycle.
Additionally, the customer need not purchase this feature (option not called).

Flexible design parameters (real options) not only include end-stage accessorizing but can also
encompass customer supplied/designed hardware with significant intellectual property content. This can be
the result of a highly collaborative alliance (between supplier/buyer) where each firm invests in the
development of new product technologies which also create partnership synergies with “... an anticipation
of achieving strategic and/or profit objectives” (Dahlquist, 2015). Alternatively, a flexible design feature
can be the result of an emerging market supplier who provides a specific deliverable (e.g. component)
committed to a leading firm to an established product architecture (Chen & Jaw, 2019). This, in turn, can
often be the result, of a major multinational firm seeking to localize a portion of its production through
foreign direct investment in a market with a favorable governance environment (e.g. absence of corruption)
(Banerjee,2019).

Specifically, this paper seeks to examine two research questions:

RQ1: How does product customization, delivery responsiveness, and design commitment influence market
Sfulfillment?

RQ2: Under what conditions does the OBP model outperform legacy mass-customization models?

This paper is organized as follows. First, we briefly review the literature on mass-customization to
introduce the “classic” Build-to-Forecast (BTF) model. Next, we introduce the new options-based planning
model (OBP) and compare it to the BTF model which will be used as a benchmark to compare to the new
model. We then present a discrete-event simulation optimization model which mimics elements of the
production planning logic of a major multinational manufacturer of capital equipment to solve an
assignment problem (product-sales order match). A simulation is a powerful technique to investigate
scenario-specific conditions in complex environments and shed light on possibly unexpected outcomes
(Choi & Wu, 2018). The results are then used to compare how the new and legacy model performs over the
entire space of customization-responsiveness. From this, practical lessons are articulated, and the
managerial implications are discussed. Finally, we discuss the limitations of the study and propose
suggestions for future research.

LITERATURE REVIEW

Conventional Production Strategies

Prior to introducing the BTF and OBP production models, a brief description of conventional
production strategies will broadly set the context for the mass-customization models. Figure 1 shows the
traditional production models on the customization vs. responsiveness axis.

The most customized, but least responsive (longer lead time) production strategy, is engineer-to-order
(ETO). No design or procurement activities occur until receipt of an actual sales order. The product is
engineered specifically to that order from first principles (e.g. building or hydroelectric dam). Somewhat
less customized but more responsive is make-to-order (MTO) production, where there is an existing design
or template that allows for a high (but not total) level of customization using design variants but the build
cycle does not commence until a sales order arrives. Assemble to order (ATO) has subassembly components
in stock and the final product is assembled to match the order. An example of this model is used by Dell
computers. Make to stock (MTS) is the most responsive production strategy but allows for essentially no
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customization. The final product is of standardized design and demand is serviced from a finished goods
inventory.

FIGURE 1
PRODUCTION STRATEGIES
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Customization-Responsiveness Squeeze and Build-to-Forecast Model

The Build-to-Forecast (BTF) model has its origin in the machine tool industry in the 1990s and
was developed as an original solution to the C-R squeeze (Raturi et al.,1990; Raturi et al., 1994). The
BTF model was further characterized in McCutcheon et al. (1994) and Meredith & Akinc (2007). Figure
2 is a simplified representation of the BTF model highlighting how sales orders are matched against the
work-in-progress inventory throughout the build cycle.

FIGURE 2
THE PRODUCTION AND ORDER-MATCHING PROCESS IN THE BTF SITUATION
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(Adapted from Meredith & Akinc, 2007)

A major limitation of the original BTF model is that it assumes the customer design requirements of a
future sales order can be accurately forecasted. This is problematic since design requirements can be very
volatile. For example, while telecommunications equipment is highly configurable, McGuinness and
Wright (1998) found in a case study that AT&T incurred excessive configuration errors due to the fast-
changing product design requirements between the time of sales order receipt and product installation.

Design Flexibility and Bill of Materials

Firms preserve and organize information about the product structure in a form of bill of materials,
or BOM. The BOM is more than an itemized listing of parts, documents, and text, but rather is a key piece
of business data that drives manufacturing, purchasing and accounting (Mather, 1982). Rusk (1990)
discusses how a BOM serves the needs of the whole organization (e.g. design procurement, cost accounting,
etc.). The structure of the BOM strongly influences a product’s build sequence. For example, a multi-level
BOM - as used in the original BTF model - would be built up from components, then into sub-assemblies
then into a final product. A flat BOM — as in a lean design using a modularized design — would have fewer
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build-sequence dependences— the final assembly is assembled from components relatively independent of
each other in build order.

FIGURE 3
BOM STRUCTURE AND SHOP FLOOR ORGANIZATION
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Figure 3 shows an example of an ANEMA (above S00HP) AC induction motor schematically and how
the BOM structure influences the build sequence. The structure of the BOM and the layout of the production
floor closely align. An important feature of this example is the BOM is relatively flat (as in a lean
production) and is built in place (Garwood, 2001) rather than moving down an assembly line.

A lean BOM structure is more realistic in the customization and responsiveness squeeze for two
reasons. First, the effects of design forecast errors on a lean (i.e. flat) BOM are less pronounced than for a
multi-level BOM structure (a major limitation of the BTF model) because modules can simply be swapped
out with minimal rework required for other components. The other reason is that many products — like the
industrial motor used as an example below — are assembled in place using project-based production. That
is, the build area for that product is occupied from build initiation to completion.

Real-Options Theory

In general, there are two types of options used to hedge against potential risks and uncertainties:
financial options and real-options. Myers (1977) coined the term “real options™ to extend the idea of
financial options to the realm of strategic decision making, specifically, the right, but not obligation, to
purchase an asset. Like financial options, real options have a call time; a time after which that right to
exercise the option expires, and the selection is fixed. In the context of strategic investment choices,
Trigeorgis & Reuer (2017) introduce a taxonomy of real options by type that enable an investment to: defer,
grow, alter scale, switch, or exit. For our research, we consider a real option as the ability to defer a design
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decision. A design decision is an investment of human and financial capital that results in the creation of a
product feature which is a unit of intellectual property.

TOWARD AN OPTIONS-BASED PLANNING MODEL

Options-Based Planning Model Description

In this section, we introduce an Options-based planning model to improve existing C-R squeeze
attempts (e.g., BTF). In the BTF model, a forecast specifies both the expected timing and the functional
requirements of future sales orders. In contrast, the OBP plan does not use a forecast to completely specity
the final product configuration. Rather, the forecast only controls the product release schedule and design
features that are fixed (DP), and the forecast does not include those design features that are not mandatory
—i.e. they are not intrinsic to its design or legally mandated features. Below, we explain the working logic
of the OBP model as a function of time and figure 4 shows the events of the OBP model.

FIGURE 4
TIMELINE OF THE OPTIONS BASED PLANNING MODEL

[WIP] to [SO] match time

[WWIP] not available: (build time —
current time) exceeds cust. accepted t
lead-time

l :
t, op
Options are called at t,, or before during
the match time. When t, >t,, DP are
constant for the remainder of the match
time

Set options

The OBP model assumes products release in waves, or cohorts. A staggered release schedule would
not affect how OBP is modeled. The forecast specifies only the expected arrival times of the sales order,
not specifically what non-standard features the orders will require. At build initiation (t, in figure 4) all
products in the wave commence the build. All work-in-process (WIP) in the release wave have the same
number of fixed DP (but each WIP can have different standard feature packages) and the options all expire
at the same time (Yop). The common option call time makes the simulation logic more parsimonious and
does not detract from the realism of the model since all WIP start and end the build-cycle at the same time.
in figure 4) all products in the wave commence the build. All WIP in the release wave have the same number
of fixed DP (but each WIP can have different standard feature packages) and the options all expire at the
same time (fop).

Once the build cycle is underway (ti) and until the match window, the construction of the product
commences. Sales orders arriving before the match time are ignored since there is too much build time
remaining for how long the customer is willing to accept (ta). In this case, it is the same as the order never
arriving at all (i.e. it is not sellable demand). The simulation will only attempt to match sales orders to
products whose remaining build-time is less than, or equal, to ta. As sales orders arrive, the planner will
attempt to match a product to that order by calling options as needed to generate matches between the sales
order and product. Products that cannot be matched to order are “orphans” and cannot be held in inventory.
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They are too customized and occupy a significant portion of shop floor space. They are disposed of either
through teardown or sold in secondary markets at a steep discount.

Real-Options-enabled Decoupling Mechanisms

Options-Based Planning (OBP) model incorporates the real options concept during the decoupling
process. Thus, key features of OBP model include: (1) Real options are the right, but not obligation, to take
a future course of action in non-financial transactions (Trigeorgis, 1996). In a configurable design, a real
option enables a flexible design feature that allows a future component selection. This is a characteristic of
capital equipment where customers expect more customizability than option bundles, (2) It also reflects the
sometimes-modular nature of capital equipment design features (i.e. “bolt on”’) where customers may
design, or actually supply hardware, to be added to the supplied product and use customer-supplied
hardware. (3) Options expire at their call time. While the option call time may coincide with the end of the
build cycle, it can also occur prior to build completion if there is appreciable component acquisition lead-
time or installation time.

The next section presents a consumer product example to illustrate how real options enable flexible
design features in the OBP model.

Real Options: An Example

A fog light is often offered as a dealer-installed accessory that can be added shortly before a customer
arrives to get the new car they purchased. The front fascia where the lamp would mount, however, is not
dealer-installed but must be installed earlier in the build cycle at the factory. To accept a fog light, a fascia
must be supplied which could allow the lamp to be installed. Thus, the fascia embodies all aspects of a real
option. There are two different fascia designs: one that enables the installation of the light (real option), the
other does not (no option). In the example here, a fascia is supplied by the factory with a cut-out (an option
that allows the lamp to be installed). Should the customer not select the light (option unexercised), a blank
is inserted in the cutout. Otherwise, when the option is called, a light is installed since the fascia can accept
this feature.

FIGURE 5
REAL OPTIONS, AN EXAMPLE
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Had a cheaper and simpler fascia been supplied (options increase design complexity), then the fog light
option would not have been available to the customer had they requested it. Thus, the customer would have
had to accept a car without the fog light as they originally requested, a ‘compromise match’, or they would
not have selected the product.
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In this example, the seat belts are not an option; they are a fixed design parameter (DP) required by law
and do not need to be forecasted nor is there a need for flexible DP. Air-conditioning is not legally required
but is so commonly specified by the customer that neither a design forecast nor design flexibility provides
many benefits. However, design parameters not mandatory, standard, or universally expected (i.e.
discretionary to the customer) may be flexible and offered as an option.

Thus, the options-based planning (OBP) model is an extension of the earlier BTF model and retains the
original BTF logic for selecting the product features that are fixed and discretionary while allowing MTO
customizable on purely discretionary design parameters (i.e. product upgrades from a base functional
model).

The OBP model reduces product configuration errors (mismatch to customer requirements) because
the flexible DP (with options) does not need to be forecast. In fact, for a fully customizable product (all
features are selectable) there would be no product design forecast at all. An example can be found in a case
study of the Build-A-Bear Workshop who is able to offer the customer full customization without the need
to carry a finished goods inventory of toys (Zabeen & Chowdhury, 2017).

This research investigates the effects of customization, responsiveness, and design commitment on
order fulfillment performance in an OBP context. It is based on a discrete event simulation which models
the assignment of products to orders as those orders emerge later in the product build cycle. The simulation
logic is specific to the OBP model (lean BOM structure, wave release strategy) which is very distinct from
the original BTF model logic.

RESEARCH METHODOLOGY - A SIMULATION OPTIMIZATION MODEL

An Optimization-Simulation Approach

To examine the potential baseline of the OBP model, we examine the working dynamics of OBP models
in the entire space of customization-responsiveness using a discrete event simulation optimization model.
A discrete event simulation framework discretizes time into “snapshots of time (e.g., into a day)”. This
allows the work-in-progress and sales order matching to be solved as a binary integer programming problem
successively in time. The model is updated at the end of each time-step.

We model both the sales order and work-in-process as vectors with binary elements. The sales order
vector consists of customer functional requirements represented as a binary element (required/not required).
Raturi et al. (1996) introduce a design parameter as a product design feature that corresponds to a functional
requirement in a sales order. To use a binary element (present/not present) vector representation of sales
orders and products, let functional requirements be defined as an element in a sales order vector and a
design parameter an element in the WIP vector. The figure below visualizes the matching process.

FIGURE 6
ORIGINAL BUILD TO FORECAST MODEL
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Assuming a product has a total of Nconfigurable parts, let the sales order vector be s and the WIP vector
be w, then the level of match between a pair of sales orders and a WIP can be expressed as a simple matching
coefficient below:

SMC =1 —% ?I:l(Sl' —Wi)z (1)

In the best-case scenario, there will be a 100% element to element match between the sales order ( SO)
and WIP, but the match between the sales order and product need not be 1:1 as the customer may be
incentivized to accept a product that is not exactly what they had wanted, yet still acceptable. Were the
functional requirement and design parameters not binary, then an alternative mapping logic would need to
be employed (Fung et al., 1998).

In this simulation, the binary integer programming takes the form of an assignment problem. It is an
optimization technique often used to identify resource allocation plans that maximize or minimize the
outcome (e.g. cost minimization, skill-match maximization, etc.). An excellent example can be found in
Lapin & Whisler (2002) who illustrate the technique by solving a managerial problem of allocating skilled
machinists to the requirements of a specific job. In this simulation, each day, arriving sales order(s) attempt
to find the match(es) with the available WIPs that can maximize the total coefficient. We formalize the
maximization problem below.

Let:
e i be the number of functional requirements and i € {1,2,3,... N}
ek be the number of standing sales orders to fulfill each time and k € {1,2,3, ... K}
e j be the number of remaining work-in-progress and j € {1,2,3, .../}
e s be the sales order;
e w be the work-in-progress;
e y be the decision variable that indicates the match yj, € {Yes = 1, No = 0} between a sales

order s and a WIP w;;

e T be the matching threshold level;
Identify all iy, ; that maximize the sum of the simple matching coefficient for all the k orders:

1 2
K I SMCy =K Y - [1 — S 21 (5w — wji) ] (2)

subject to:

o Yo Zjy v <min (K

Z§=1 Yij < 1, foreachk € {1,2,..,K}

Yh=1Vkj <1, foreachje{1,2,..,/}

e ye{01}

o SMCy; =T, ify,; =1

In each time-step (in our case, a day), once the obtained matching coefficient(s) are higher than a

predefined threshold level, then the match(es) are made. Subsequently, the boundary conditions (e.g.,
number of remaining WIP, etc.) are updated then the time is “marched” forward. This process is repeated

until the entire building cycle is finished.
The complete simulation logic is shown below (figure 7) in the form of a flowchart.

Numerical Setting

Below, we explain the numerical setting of the simulation. Three variables control the overall
performance of the matching: the level of design commitment, the level of responsiveness requirement, and
the level of customization in design. For each variable, we divided the value space into four levels. This
partition treatment has several merits. While reducing the computational burden of the model, at the same
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time, it will allow us to observe whether consistent patterns can be observed as the values of the variables
increase from a lower value to a higher one.

Below, we present them in a standardized form in table 1. This form of presentation intuitively shows
the extent of the influence of each variable. In the actual simulation, we used the build cycle of 50 days
with 10 total design parameters setting. Thus, xOpt=.3, T'a = .5, and Flex = .8 will translate into a
matching environment where the options will expire on the 15th day, the customers are willing to wait a
maximum of 25 days, and 8 parts are configurable. There will be 10 sales orders (/X = 10) arriving
randomly to find a match with 10 available WIPs (J = 10) that are launched as the same batch. The inter-
arrival time follows a uniform distribution. The sales order functional requirement binaries are also random.
A match attempt is considered successful when the simple matching coefficient (SMC) is higher than the
predefined threshold of 0.75. The final matching performance is calculated by the proportion of matches
(out of 10 WIPs).

FIGURE 7
OPTIONS-BASED PLANNING: THE SIMULATION LOGIC
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* This integer programming assigns one or more sales orders (SO) to WIPs so
that such assignment(s) can maximize the simple matching coefficient(s).
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TABLE 1
VARIABLE DEFINITION AND VALUES

Dimension Description Variable Levels
Value Study 1 Study 2
Design Commitment | It is the timing at which the options 0.30 Earl BTF
Variable name: xOpt | will expire. A very small value 0.50 Y Early
means the options will be expired 0.80 Late
in very early stage of the building 1.00 Late Very Late
cycle.
Responsiveness It is the customer’s expectation at 0.10 Hich Hish
Variable Name: Ta which the manufacturer has to 0.40 ‘& ‘&
respond. A very low value means a 0.75
very demanding lead time. 1.00 Low Low
Customization It is the extent to which WIPs are 0.00 Low Low
Variable Name: Flex | customizable. Lower value means 0.50
low in customizability. (1) gg High High

While the original simulation is designed as a 4x4x4 factorial design, in the data analysis phase, we
combine the levels in a different way to better serve the purpose of the study. Study 1 has a 2x2x2 factorial
design while study 2 has a 4x2x2 factorial design. In study 1 we review the working dynamics of the OBP
model and in study 2 we plan to compare the matching performance of the BTF model with the different
levels of the OBP model. Grouping the data during the analysis phase offers an important advantage in
addition to the brevity of the reporting. Below, we delineate the logic.

Analytical Advantage of Group Partitioning

The simulation variables span the entire production planning space of customization, responsiveness
and early/late design commitment and model conditions at the extreme ranging from make-to-order (high
customization/low responsiveness/late design commitment) to make-to-stock (low customization/high
responsiveness/early design commitment). While the simulation logic (Figure 7) was developed specifically
to model the OBP model, there are regions in the simulation space that closely approximate the BTF
condition. Specifically, the original BTF model allows for pre-forecasted design features to be re-worked
which is, in effect, a short-duration — albeit, expensive — option. Therefore, partitioning the OBP simulation
data enables the comparisons between the original BTF and OBP models. Specifically, when the simulation
variable xOpt=.3, the “options” have a very short call time. In the original BTF model, this would
correspond to a one-time rework to compensate for the design forecast error.

The real options-enabled flexible design parameters also determine when the design must be committed
to, or the order decoupling point. The decoupling point is normally understood as the level in the BOM (the
products level of completeness) that the inventory is held (e.g. sub-assembly for ATO or finished goods for
MTS). However, in the mass-customization context — both BTF and OBP — it also represents when the
product design is fixed. For example, in a make-to-stock model, the product design is committed early (at
product build initiation) whereas, for make-to-order, the design commitment occurs late — i.e. only after an
order arrives. While MTS and MTO are examples of pure form production models, there can also be hybrid
models that exhibit characteristics of more than one model. In the context of the C-R/design commitment
space where the OBP and BTF are defined, table 2 maps out both pure-form and hybrid production.
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TABLE 2
PRODUCTION MODELS IN THE C-R/DESIGN COMMITMENT SPACE

Design Commitment

Early Late
Customization . .
B High Low High Low
Responsiveness
High C-R Squeeze Make-to-Stock C-R Squeeze Make-to-Stock Like
Low Make-to-Order Like  Long LT — Std. Make-to-Order Long LT — Std.

The original C-R squeeze is the condition that motivates both the OBP and BTF models and is where
both customization and responsiveness requirements are high. This applies whether the design commitment
must occur early, as in BTF, or late as possible in OBP. The traditional MTS model has high responsiveness
and early design commitment (at product build initiation). At the other extreme is MTO where
customization is high but responsiveness is low. However, the design commitment is late because the design
decision does not need a forecast, it is simply what the actual customer order specifies. There are, however,
interesting hybrid conditions that design flexibility gives rise to and form the basis of the propositions that
follow.

MTS-like is what Silver & Moon (2001) refers to as convertible units. These types of products may be
sold “as-is” from stock or maybe customized on-demand on a limited basis. To use the previous fog lamp
example, the car may be sold from stock as is or a fog lamp installed at the dealer almost on demand. MTO-
like conditions can arise in the OBP model where the options have a short call time but the customer
requested responsiveness is low. Thus, while some design features may need to be made early, the overall
model is similar to classic MTO.

Novel for the options-based planning environment is the case that we label long lead-time standard
(LLT-Std). In managerial practice, this would simply be MTO production with no allowable customization.
This can occur when a product is highly engineered and standard for a market segment but consists of long
to procure components and the finished product is physically large and would represent a massive amount
of locked-up capital if held in stock by the manufacturer. An example of this is the ANEMA motor example
previously featured. Often, a customer would simply specify speed and power they wanted and that it be
“API-compliant” — American Petroleum Institute. The API requirements specify the required design
attributes for the entire petroleum industry and require no further customer specifications.

TABLE 3
FREQUENCY ANALYSIS OF MATCH

Proportion of Match Freq. Percent Cum.
0% 27 4.29 4.29
10% 39 6.19 10.48
20% 51 8.10 18.57
30% 76 12.06 30.63
40% 87 13.81 44.44
50% 72 11.43 55.87
60% 80 12.70 68.57
70% 90 14.29 82.86
80% 65 10.32 93.17
90% 42 6.67 99.84
100% | 0.16 100.00
Total 630 100.00
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RESEARCH RESULTS

We ran 10 simulation runs for each of 64 original treatment groups. In this case, we would expect a
total of 640 observations. However, 10 observations were removed from the no-flexibility scenarios (Flex
= 0) since they represented duplicated conditions which were not conceptually distinct. Specifically, for the
no flexibility scenarios (no real option-enabled design features), when the option call time to, =1.0, it is
conceptually equivalent to when 2Opt = 0.3 (or any arbitrary value of 2Opt ) since there are no options to
call.

We review the descriptive statistics of the match and fit the data into linear regression models for
statistical analysis. Below, we first report the results of study 1 and then study 2.

Study 1 Results (2x2x2)

The simulation results span the eight conditions described above (table 2) and form the basis for the
subsequent discussions. In study 1, we have ending product match proportions as shown in Table 4. The
cells correspond to the C-R/design space previously shown (table 2). For example, for the C-R squeeze and
early design commitment, the OBP model produces a mean match proportion of .349.

TABLE 4
SIMULATION RESULTS: END PRODUCT/ORDER MATCH PROPORTION

Design Commitment
Early Late
Customization High Low High Low
Responsiveness M (SD) M (SD) M (SD) M (SD) M (SD)
High 0.349 (.201) 0.260 (.162) 0.654 (.186) 0.505 (.218) 0.446 (.247)
Low 0.419 (.190) 0.300 (.153) 0.735 (.143) 0.712 (.127) 0.523 (.243)
M(SD) 0.391 (.197) 0.284 (.158) 0.699 (.169) 0.629 (.197) 0.491 (.248)

Table 5 reports the results from the regression analysis. The result shows that the three factors are
significant and their direct effects explain nearly 50% of variations among the overall matches. All factors
have fairly small standard errors and the variance inflation factors are lower than the threshold of 3. All
variables are 2-level categorical variables; therefore, the size of the coefficient is the difference with the
baseline variable level.

TABLE 5
REGRESSION RESULTS (2X2X2)

DV: Proportion of Match ~ VIF

Commitment Late 0.325*" 1.01
(0.0142)

Responsiveness Low 0.0882™" 1.00
(0.0143)

Customization High 0.0928"** 1.01
(0.0144)

Constant 0.239*"
(0.0152)

Observations 630

R? 0.498
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The commitment variable has the biggest coefficient size with the late commitment being 0.325 larger
than the early commitment case. The differences between the two levels of responsiveness and the
customization are smaller at nearly 0.1. We also reviewed the fitted results for overall matches and plotted
the results below in figure 8. While holding all other factors constant, the early commitment case has overall
matches of 0.35 while the number for the late commitment case is 0.67.

FIGURE 8
PREDICTIVE MARGINS OF EACH VARIABLE

Predictive Margins (95% CI) of Each Variable
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Study 2 Results (4x2x2)
The purpose of study 2 is to compare the overall matching performance between the BTF model and

the OBP model. In doing so, we used the four-level partitioning for the commitment variable while other
variables remain the same. In study 1, we observed that the options in fact increase the proportion match
substantially. We are interested to see if that effect is consistent across different levels of the options. We
also explained earlier, that the early options call resembles the BTF model. Thus, the four-level analysis
will allow us to explore both of our research questions.

TABLE 6
REGRESSION RESULTS (4X2X2)

DV: Proportion of Match VIF
BTF or OBP
BTF (Baseline)
Early OBP 0.113™ 1.35
(0.0179)
Late OBP 0.307"" 1.35
(0.0179)
Very Late OBP 0.451* 1.32
(0.0186)
Responsiveness Low 0.09217 1.00
(0.0133)
Customization High 0.0855"*" 1.02
(0.0135)
Constant 0.192"
(0.0157)
Observations 630
R? 0.564
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We report the regression results in table 6. The result shows, when the BTF model is the baseline model,
each level increase in the options call time delay constantly improves the overall matching performance.
The variance inflation factors of the variables are all smaller than the threshold of 3, thus multicollinearity
is not a concern in this model. We also plotted the predictive margins of the four-level commitment variable
over the proportion match. As can be seen from the figure 9 below, with all factors holding constant, while
the BTF model only has 0.3 overall matching, when delaying the options call time, the overall matching
performance can reach up to 0.75.

FIGURE 9
PREDICTIVE MARGINS BY MODEL

Predictive Margins by Model with 95% Cls
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Therefore, from the analysis above, we can conclude that the OBP model is a much superior model
than the BTF model in that: 1) it has a substantially higher matching performance and, 2) the benefits of
the OBP model is consistent across different lead-times.

The previous discussion relates to the performance of the OBP model compared to various pure-form
and hybrid production models (tables 3 and 4) and conditions that maximize the benefits of real option-
enabled design flexibility. Next, we see how the new OBP and original BTF model compare.

As previously developed, the BTF model can be thought of as the core of the OBP model; at least for
fixed design features. However, both the OBP and BTF have the ability to postpone design commitment
decisions — albeit very limitedly for the BTF model. As table 4 shows, a late design commitment enhances
the effects of design flexibility.

Following the regression model, Figure 9 shows the 95%CI of the predicted value for different levels
of design commitment. At one extreme is the BTF model since the design is committed near build initiation.
Next is what we label variously as early, late and very late OBP as defined in table 2 for the data partitions
used to compare the two models.

It can be seen, that the largest improvement in match performance occurs between the levels of early
and late design commitment (.411 vs .604, A=+46.96%), while between late OBP and Very Late OBP (.604
vs .749, A=+24%). The declining marginal benefit may be due to the OBP model approaching the MTO
model (i.e. not much more possible improvement).

Performance Predictive Margin vs. Responsiveness

Figure 10 is the predictive margins from the regression model for the variable responsiveness. As
expected, as the responsiveness requirements are reduced then the match performance improves until the
condition of very low responsiveness is achieved.
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FIGURE 10
MATCH PERFORMANCE PREDICTIVE MARGINS (95% CI) VS. RESPONSIVENESS
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This represents a very low responsiveness condition where the customer-accepted lead time is almost
the entire product build time while still not being pure form MTO. This is because the product is not
committed to a specific customer order at build initiation. The long customer accepted lead-time results in
a match window almost as long as the build cycle. Specifically, if customers accept very low responsiveness
then the match time could start anywhere from near product build initiation until the very end of the build
cycle. If a sales order arrived very early, then the environment would approximate — or duplicate — MTO
and a match is more likely. However, a late-arriving sales order would be at the end of the product build
cycle. While the customer may be patient, the product’s flexible design features may have already expired,
and thus ineligible to match. Another effect of a wide match window is that at any single time period in the
match window, there may exist only a single sales order, or none, rather than multiple orders to match
against multiple products — the assignment problem. Thus, instead of being a many-to-many match where
the best product/order combination is created, it is a 1:m match; a single sales order can take a product that
could be an even better match for an order that emerges later but cannot match because it has not arrived
yet. Thus, there is an early winnowing out of the best product configurations available for later arriving
orders. That is if the planner uses a “first best available match” logic as this simulation logic does.

LESSONS

In this section, we summarize the observations from study 1 and study 2 into a set of lessons. This
forms a basis for discussing managerial implications.

The solution to the C-R squeeze requires that product build commence prior to the arrival of the order.
When using design flexibility to reduce the eftects of forecast errors in design configuration — as in the
OBP model- the effectiveness of the model is underpinned by how long the flexibility lasts in the match
window (i.e. how late is the call time, this is when the design is committed). This is because the arrival time
of the order — while more predictable than a DP — may still arrive at different times relative to where the
product is in its build cycle. Option call times can be extended by option-enabled components being in-
stock (or quickly procurable) and having fast installation times.

In the C-R squeeze, the effectiveness of design flexibility is maximized (.654 vs .349, A=97.39%) if
the option call times are late. Therefore;
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Lesson 1: The effectiveness of design flexibility is maximized if the required design
commitment is late.

Correspondingly, if the options have long call times (late design commitment), then, there are other
advantages. Namely, the adverse effects of allowing a customer to specify many design features (i.e. high
customization) are reduced. In fact, high customization in a high-responsiveness environment is beneficial
(.505 vs .654, A=1+29.5%). This is because the design is more “fluid” with fewer standard or mandatory
features to degrade the matching ability of the WIP in the short match time allowed. In a more benign low
response environment (late option call time), the effect of customization is low (.712 vs .735, A=+3.23%)).
This is because late option call times enable the product/order matching to more approximate MTO logic.
Therefore;

Lesson 2: In a high responsiveness environment, late design commitment enables high
customization to improve match performance.

and

Lesson 3: In a low responsiveness environment, late design commitment reduces the effects
of customization to improve match performance.

In a pure form make-to-stock environment, the design decision is made earlier (at product build
initiation) and then sold from inventory. While not a dominant production model used for the manufacturing
of capital equipment, it is not always infeasible. In the case of large AC induction motors, there is “shared
space” between standardized NEMA motors (<500 hp) and the larger customized — typically MTO made —
motors. These motors are often the approximate size of an office desk and could conceivably be held in
finished goods inventory — albeit in small quantities. They also could be modified to a limited extent
quickly; primarily adding accessories — the “convertible unit” or, here, “MTS-like” case of high
responsive/low-customization (table 4). The effect of early vs late design commitment is .260 vs .505,
A=1+94 2%) respectively. Thus, options enable essentially a stock product to match a larger proportion of
the market demand without having to maintain a large and diverse finished goods inventory. Therefore;

Lesson 4: Options-based planning reduces (or eliminates) the need for a finished goods
inventory to maintain high responsiveness.

Sometimes, a producer can influence the market (or change what market it wants to serve). This
can be through marketing campaigns, incentives, or even product mix. If a producer has “market-making”
power or at least the ability to choose what market it supplies then it can be seen that the maximum
performance gain of using the OBP model occurs between the transition from MTS to the MTO (table 4)
environment where the difference in results are (.260 vs .735, A=+182.7%). MTS products are often
commodity-type with low profit margins and undifferentiated branding. In contrast, highly flexible design
can approximate MTO customization and enable a more customized (i.e. differentiated) products which
could potentially either be higher margin and/or targeted to market sub-sectors. Therefore;

Lesson 5: Options-based planning has the maximum performance premium when
customization is high, and responsiveness is low.

MANAGERIAL IMPLICATIONS: ACHIEVING CUSTOMER-DRIVEN DESIGN AND
RESPONSIVENESS OUTCOMES

The options-based planning model introduced in this paper uses product customization and design
flexibility (real options) to address an old problem: the customization-responsiveness squeeze. However, it
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also presents the possibility of transforming a “problem” - the C-R squeeze - into a source of potential
competitive advantage.

Figure 11 presents a conceptual framework that moves past the classic C-R squeeze, which is the focus
of legacy mass-customization models like BTF and presents a vision of the future. It presents a roadmap
for both future research and near-term managerial practice. It also attempts to present managers with a
framework on how to respond to shortening product life cycles and increased market uncertainty where
design requirements may rapidly change.

Two fundamental drivers in the current and future market of capital equipment are the need for agile
design to respond to quickly changing market needs and responsive delivery to reduce the buyer risk of
short-term obsolescence. Conceptually, this is the original C-R squeeze and forms the foundation of our
future conceptual model. To materialize this vision, we define both supplier and customer outcomes.

For the supplier, they must engage in planning front-end uncertainties - specifically, anticipating
possible future customer design requirements that will not become apparent until well after product build
commences. The supplier must also manage back-end uncertainties. This is the demand uncertainty of
what/if sales orders will exist at the end-stage of the product build cycle - i.e. product order matching.
Maximizing the proportion of product build that ends up matched to an order at or before the end of the
build is the desired mass-customization outcome. Specifically, products that are matched to an order will
not require costly - or infeasible - holding in inventory or disposal (unsellable product).

From the customer perspective, buying capital equipment is making a strategic investment in their
production/service capacity that will affect their ability to serve their own end-customers. As buyers, they
have customer-driven requirement directives (to the equipment supplier) that reflect their own needs. Since
these needs are often idiosyncratic to their own market (or firm), a standard stock product will often not
suffice. Thus, there must be much more collaboration between buyer/supplier and even across functions
within their own organization, what we refer to as cross-functional operational practices. The customer-
valued performance result is a product that is fully customized to their specific needs and can be delivered
quickly so that it can be in operation sooner and have a longer productive life before the market shifts too
far and renders the equipment obsolete. The coupling mechanism at an operational level is real options.

The OBP model enables a supplier/customer synergy through customization that essentially enables
design features to be customized without novel new technology. This could be because the customization
makes use of customer-developed technology or the result of a joint development between the supplier and
buyer.

FIGURE 11
CONCEPTUAL RATIONALE: ACHIEVING AGILE-DESIGN AND
RESPONSIVE-DELIVERY CAPABILITIES
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(Adapted from Hong, Jagani, Kim and Youn, 2019)
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CONCLUSION

Addressing the customization-responsiveness squeeze requires that a product begin its build cycle prior
to an actual sales order arrival. In the case of capital equipment, carry a finished goods inventory is often
infeasible since a large amount of capital would be locked up and the product is physically large and often
commissioned onsite at a customer location. Both the BTF and OBP mass-customization models can
address the C-R as this paper has described. The primary difference between the two models is how the
challenge of increasingly volatile design requirements are mitigated. For capital equipment acquisition, the
responsive requirements are often less volatile because the investment decision is of a strategic nature and
less subject to transient market conditions.

Because of the oftentimes-synergistic relationship between an equipment supplier and purchaser — the
possibility of joint product development - it is sometimes possible to reduce the responsiveness required of
the OBP model since the design configuration can be decided later in the build cycle. However, the
simulation results show a possible limitation of a “first, best” product/order match logic when using a mass-
customization model like OBP. Future research can model scenarios where the planner withholds product
order matches to mitigate this poaching of highly flexible products meeting orders that could possibly have
been served later. However, this presents the “match or wait” dilemma described in Akinc & Meredith
(2009) whereby a match is withheld but no later eligible order arrives (i.e. product not configured correctly
for the later arrive order). The authors make an analogy to an everyday situation, the “parking lot” problem
where one forgoes a distant spot in the hope of a closer spot that may not be available.

REFERENCES

Akinc, U., & Meredith, J.R. (2009). Modeling the manager’s match-or-wait Dilemma in a make-to-
forecast production situation. Omega, 37(2), 300-311.

Akinc, U., & Meredith, J.R. (2015). Make-to-forecast: customization with fast delivery. International
Journal of Operations & Production Management, 35(5), 728-750.

Banerjee, S. (2019). Foreign Direct Investments: Examining the Roles of Democracy, Corruption and
Judicial Systems Across Countries. Journal of Applied Business and Economics, 21(6).

Chen, I.S., & Jaw, Y.L. (2019). A Reverse Perspective on Global Value Chains: Implications from the
Internationalization of Rising Emerging Market Firms. Journal of Applied Business and
Economics, 21(6).

Chot, Y., Li, J., & Wu, D. (2018). Applications of Stochastic Simulations in Inventory Management
Optimization: Cost Accounting Perspectives. Journal of Applied Business and Economics, 20(2).

Dahlquist, S.H. (2015). Interfirm marketing alliance: understanding the influences of complementarity,
compatibility, and combinative capacity on success. International Journal of Strategic Business
Alliances, 4(2-3), 167-183.

Fung, R.Y ., Popplewell, K., & Xie, J. (1998). An intelligent hybrid system for customer requirements
analysis and product attribute targets determination. International Journal of Production
Research, 36(1), 13-34.

Gammoh, B.S., Voss, K.E., & Skiver, R. (2011). Consumer evaluation of continuous and discontinuous
innovation: The effects of brand equity and product category knowledge. American Journal of
business, 26(1), 65-79.

Garwood, D. (2004). Bills of material for a lean enterprise. Dogwood Publishing Company, Inc.

Hong, P, Jagani, S., Kim, J., & Youn, S.H. (2019). Managing sustainability orientation: An empirical
investigation of manufacturing firms. International Journal of Production Economies, 211(5),
71-81.

Lapin, L.L., & Whisler, W.D. (2002). Quantitative decision making with spreadsheet applications (Vol.
1). Duxbury Press.

50 Journal of Applied Business and Economics Vol. 22(10) 2020



Lee, S. (2019). When is the atypical design not penalized? Moderating role of product innovativeness and
technological sophistication in consumer’s evaluation of new products. American Journal of
Business, 34(3/4), 169-188.

Lee, S., & Johnson, Z.S. (2017). The effect of new product design and innovation on South Korean
consumer’s willingness to buy. Asia Pacific Journal of Marketing and Logistics, 29(1), 98-113.

Mather, H. (1982). Bills of materials, recipes & formulations. Wright Publishing Company.

McCutcheon, D.M., Raturi, A.S., & Meredith, J.R. (1994). The customization-responsiveness squeeze.
MIT Sloan Management Review, 35(2), 89.

McGuinness, D.L., & Wright, J.R. (1998). Conceptual modelling for configuration: A description logic-
based approach. Ai Edam, 12(4), 333-344.

Meredith, J., & Akinc, U. (2007). Characterizing and structuring a new make-to-forecast production
strategy. Journal of Operations Management, 25(3), 623-642.

Myers, S.C. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5, 147-175.

Park, J., & Yoon, S. (2017). Antecedents of consumer animosity and the role of product involvement on
purchase intentions. American Journal of Business, 32(1), 42-57. ps://doi.org/10.1108/AJB-08-
2016-0028

Raturi, A.S., Meredith, J.R., McCutcheon, D.M., & Camm, J.D. (1990). Coping with the build-to-forecast
environment. Journal of Operations Management, 9(2), 230-249.

Rusk, P.S., & Barber, K.D. (1989). Structuring the bills of material for a complex make-to-order product
(A case study). Engineering Costs and Production Economics, 15,215-222.

Salvador, F., & Forza, C. (2004). Configuring products to address the customization-responsiveness
squeeze: A survey of management issues and opportunities. /nternational Journal of Production
Economics, 91(3), 273-291.

Sheffi, Y. (2015). The power of resilience: How the best companies manage the unexpected. Mit Press.

Silver, E.A., & Moon, 1. (2001). The multi-item single period problem with an initial stock of convertible
units. European Journal of Operational Research, 132(2), 466-477.

Srinivasan, R., & Swaminathan, J.M. (1997). Managing configurable products in the computer industry:
Planning and coordination issues. Sadhana, 22(1), 33-43.

Tiihonen, J., Soininen, T., Mannisto, T., & Sulonen, R. (1995). State-of-the-practice in product
configuration—a survey of 10 cases in the Finnish industry. In Workshop on Knowledge Intensive
CAD (pp. 95-114). Springer, Boston, MA.

Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation. MIT press.

Trigeorgis, L., & Reuer, J.J. (2017). Real options theory in strategic management. Strategic Management
Journal, 38(1), 42-63.

Tuovila, A. (2019). Capital Asset. Retrieved from: https://www.investopedia.com/terms/c/capitalasset.asp

Zabeen, M., & Chowdhury, S.H. (2017). Mass Customization through Manufacturing Postponement
Strategy: The Case of Build-A-Bear Workshop. American Journal of Business, Economics and
Management, 5(4), 25.

Journal of Applied Business and Economics Vol. 22(10) 2020 51



