
 Journal of Applied Business and Economics Vol. 23(4) 2021 167 

Quantum Continuous Gradient Models in the Study of Markets 
 

Javier M. Huarca Ochoa 
University of San Martín de Porres 

 
Luis H. Ludeña Saldaña 

University of San Martín de Porres 
 
 
 

Business students graduate without knowing about the existence of quantum continuous gradient models 
(QCGM) to study financial markets. This paper introduces and discusses these models. The underlying 
function space Map (X, Y) of QCGM is a set of smooth maps called envelope-gradient functions (EGF) 
from X to Y with the standard compact-open topology. Herein, we take advantage of some natural 
properties of EGF to define a classical associative algebra on it and develop a mathematical QCGM. The 
development of QCGM involves principles of deformation quantization theory and definite integrals of EGF 
on uniform probability distributions. Applications in economics and further lines of research are suggested.  
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INTRODUCTION 
    

Over two centuries ago, power tower functions (PTF) were studied by L. P. Euler (1783) and G. 
Eisenstein (1844), and many mathematicians have continued writing papers about PTF to this day, namely 
Le Lionnais (1983), Wells (1986, p. 35), Vardi (1991), Olver et al. (2010), and L. Moroni (2019). So, there 
is an abundant bibliography on these uncanny functions, which are known under such different names as 
“Infinite Exponentials” (Rippon, 1983), “Iterated Exponential Constants” (Finch, 2003), etc. In this paper, 
we purposely call them Envelope-Gradient Functions (EGF).  

This paper arises from the attempt to study some natural geometric and algebraic properties of finite 
level smooth envelope gradient functions on a Poisson manifold and use these findings to construct quantum 
continuous gradient models (QCGM) and establish some of their principal features.  

The general framework of the QCGM is a function space Map (X, Y) on a manifold M whose members 
constitute a set of continuous maps from X to Y with the standard compact-open topology. These members 
are precise: the EGFs. Here the purpose of the word ‘envelope’ is to point out the geometric framework 
underlying our discussion, the domain of the uniform distribution of probability (see Figure 1). These EGFs, 
whose shapes and behavior are similar to those of well-known elementary functions, also comply with the 
rules of differential and integral calculus such as the central concepts of limits, continuity, derivatives, 
integration, and power series. One of the first and most obvious properties of EGFs is that all members 
share a common fixed point. Namely, all EGFs have a single attractive fixed point (1, 1) at the north-eastern 
vertex of the envelope seated on the unit square 𝐼𝐼 × 𝐼𝐼, as depicted in Figure 1, where 𝐼𝐼 is the interval [0,1]. 
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More generally, for our purposes, 𝐼𝐼𝛼𝛼 = [0,𝛼𝛼], for 𝛼𝛼 ∈ (0,1) ∪ {1,2,3, . . . }. These sets will be, precisely, the 
fundamental domain of the uniform distributions and the target of each function space EGF on which most 
of the work and exploratory analysis of the QCGM is done. 

The study procedure is as follows: Firstly, we define the EGF and review some of its relevant properties 
to define a classical associative commutative algebra of EGF on a differentiable Poisson manifold M. It 
will be the setting for most of our discussion, in which we compute some definite integrals of EGF on 
uniform probability distributions, and the setting where we deal with purely formal algebraic properties of 
deformation quantization of this classical algebra as a formal power series. In the first half of this procedure, 
we will show that the integration of lower-level EGFs, and probably also high-level ones, is strongly linked 
to several well-known special mathematical functions, such as Gamma, Beta, Whittaker M, Confluent 
Hypergeometric Function, and others. However, we don’t intend to further explore these interesting 
relations in this paper. We will present these studies and findings elsewhere.   

Secondly, after we highlight the meaning of “deformation quantization” we proceed to deform the 
previously defined classical associative commutative algebra of EGFs with the purpose of performing the 
same analysis we have done on this classical algebra. Thus, in the second half of this procedure description 
we point out a few concepts and some principles of quantum mechanics formalism. 

Furthermore, throughout the integral-solving process, we illustrate the principle of finite discreteness 
in quantum mechanics and the principle of correspondence between classical and quantum fields with the 
existence of the classical limit. Thirdly, we combine both findings, two world results, to compare and 
conclude the QCGM features.  

Finally, we present a concrete case for the previous steps, to explore and discuss – both from a classical 
and quantum point of view – some topics in market economics and finance  in the context of some uniform 
probability distributions. Specifically, we explore the generalized law of supply and demand from this new 
point of view describing many distinct areas under (over) the shape of lower-level EGFs (e.g., we explore 
areas of consumer and producer surplus, surplus loss, the intensity of demand and supply, etc.) on several 
domains of  𝐼𝐼 × 𝐼𝐼.  

This paper is organized as follows: Section 2 provides the required existing literature review and the 
postulates for the development of the QCGM. Section 3 shows the QCGM construction procedure over 
several domains geometrically resembling envelopes bounded and crossed by gradients (Figure 1). Next, 
to support this methodology, Section 4 presents a concrete application of the QCGM. Finally, Section 5 
concludes with a summary of findings, as well as some recommendations and suggestions for further 
research. 

 
REQUIRED SUPPORTING LITERATURE 
 

In this section, before formally developing the quantum continuous gradient market models, a review 
of the literature providing the theoretical basis is presented. Specifically, we present some concepts and 
properties of envelope gradient functions, as well as a very brief review of quantization formalism and 
deformation quantization. Also, we briefly introduce the standard concept of the generalized law of supply 
and demand.  
 
Envelope Gradient Functions 

Envelope gradient functions (EGF), which have historically been given varying denominations, have 
been studied for more than two centuries, starting with L. Euler (1783) and G. Eisenstein (1844). Since 
then, many other mathematicians have continued researching up to the present day and, nowadays, EGFs 
are being applied in several computer software languages and can be computed analytically (Knuth, D. E., 
1976).  
 
Definition A 

Let 𝐺𝐺𝑘𝑘(𝑥𝑥) denote the real-valued continuous gradient function of level 𝑘𝑘, where 𝑘𝑘 is a finite natural 
number. Then, 𝐺𝐺𝑘𝑘(𝑥𝑥) is called an envelope gradient function defined by: 
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𝐺𝐺𝑘𝑘(𝑥𝑥) = 𝑥𝑥𝑥𝑥𝑥𝑥
..
.𝑥𝑥

���
𝑘𝑘

     for  𝑥𝑥 ≥ 0.  (1) 

 
Here, 𝐺𝐺𝑘𝑘(𝑥𝑥) is evaluated from the top-down a finite number of times and each subsequent level 𝑥𝑥 is adjoined 
to the bottom of the gradient. EGFs may be unfamiliar to the business community. Therefore, a few 
examples of shapes, for 𝑘𝑘 = 1,2,3,4, and properties are provided to clarify the definition and notation of 
these functions. Also, as most computer software does, hereinafter we assume that 00 = 1. 

𝐺𝐺1(𝑥𝑥) = 𝑥𝑥 , G2(𝑥𝑥) = 𝑥𝑥𝑥𝑥 , G3(𝑥𝑥) = 𝑥𝑥𝑥𝑥𝑥𝑥 , G4(𝑥𝑥) = 𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥

, for each𝑥𝑥 ≥ 0, show the first, second, third, 
and fourth-level EGF, respectively. Their shapes are shown in Figure 1.  
     From Definition A and Figure 1, it would seem that for 𝑥𝑥 > 1 𝐺𝐺𝑘𝑘(𝑥𝑥) must diverge. But, amazingly, this 
is not so (Galidakis, I. N. 2006). For our purposes, 𝐺𝐺𝑘𝑘(𝑥𝑥) has a finite number of levels and real values in 
the uniform distribution over 𝐼𝐼𝑥𝑥. Also, it is well defined on the domain 0 ≤ 𝑥𝑥 ≤ 𝑒𝑒

1
𝑒𝑒 and any closed and 

bounded interval 𝐼𝐼𝑥𝑥 for 𝑥𝑥, as above. 
 

FIGURE 1 
GEOMETRIC FRAMEWORK SHOWING SHAPES OF SOME EGF FOR K=1,2,3,4, 

 
We plot a few shapes of lower-level continuous gradient functions 𝐺𝐺𝑘𝑘(𝑥𝑥). For illustration purposes, we have partially 
enclosed their targets by a unit square 𝐼𝐼1 × 𝐼𝐼1, the main ‘envelope’ of the discussion. 

 
If we keep adjoining more levels at the bottom of the EGF, it produces an infinite sequence of 

successive approximations to (1). So, this sequence converges on the domain established already above. 
Enough papers are proving these facts and iterative solutions for a given 𝑥𝑥 (Lynch, 2013). EGF’s 
fundamental property, for our purpose, is that the terms of the subsequence {𝐺𝐺2𝑘𝑘−1(𝑥𝑥)} are strictly 
increasing monotonic functions, but the terms of the subsequence {𝐺𝐺2𝑘𝑘(𝑥𝑥)} are not (see Lemma 1). 
Therefore, gradient functions should be understood as a sequence of functions whose odd members increase 
monotonically on the entire domains and whose even members do not. Additionally, even members share 
a local extreme value when 𝑥𝑥 = 𝑒𝑒−1. 
 
Quantum Mechanics Formalism 

Here, we briefly present a general conceptualization of the formalism of quantum mechanics (QM) and 
then we focus on the quantization deformation method initiated by Bayen F. et al. (1978). The QM 
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formalism establishes the meaning of quantization and it tells us that there are many quantization algorithms 
complying with the correspondence principle (Berezin F.A., 1975), all of which describe the evolution of 
a system. An intuitive method to quantizing a classical mechanic's dynamic system should be the following:  

Let (𝑀𝑀, 𝜏𝜏) be a classical mechanics model where 𝑀𝑀 is a differentiable manifold and 𝜏𝜏 is a skew-
symmetric tensor field on this manifold. Let 𝛢𝛢(𝑀𝑀) be a set of differentiable functions 𝑓𝑓,𝑔𝑔, . .., on 𝑀𝑀. 𝛢𝛢(𝑀𝑀) 
is a commutative and associative algebra for the standard addition and multiplication and it is a Lie algebra 
concerning the Poisson bracket {𝑓𝑓,𝑔𝑔} = 𝜏𝜏𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 where de Jacobi identity is valid.  
With these foundations, we borrow some ideas from F. Berezin’s paper (1975) and give a general 

mathematical definition of quantization, from a deformation quantization viewpoint. 
 
Definition B 

The associative noncommutative algebra 𝔄𝔄 with involution is identified as the quantization of the 
classical mechanics (𝑀𝑀, 𝜏𝜏) if it has the following properties: (1) there is a family 𝐴𝐴ћ of associative algebras, 
of differentiable functions 𝑓𝑓(𝑥𝑥) for 𝑥𝑥 in 𝑀𝑀, such that the index ћ is the formal variable and runs on the 
positive side of the real axis and 𝔄𝔄 consists of functions 𝑓𝑓(ℎ, 𝑥𝑥) taking values in 𝐴𝐴ћ, for fixed ћ. The 
involution and multiplication in 𝔄𝔄 are connected with the involution and multiplication of 𝐴𝐴ћ in the usual 
way �𝑓𝑓⊙�(ћ) = (𝑓𝑓(ћ))•, where ⊙,• are the involutions in 𝔄𝔄 and 𝐴𝐴ћ respectively, (𝑓𝑓1 ⊗ 𝑓𝑓2)(ћ) =
𝑓𝑓1(ћ) × 𝑓𝑓2(ћ), and where ⊗,× are the multiplications in 𝔄𝔄 and 𝐴𝐴ћ, respectively. (2) There is a 
homomorphism 𝜙𝜙:𝔄𝔄 → 𝛢𝛢(𝑀𝑀) of the differentiable functions on 𝑀𝑀, with the standard + and ×, given by 
𝜙𝜙(𝑓𝑓) = 𝑙𝑙𝑙𝑙𝑙𝑙

ћ→0
𝑓𝑓(ћ, 𝑥𝑥)𝑘𝑘 = 1and meeting: (i) for any two points 𝑥𝑥1, 𝑥𝑥2in 𝑀𝑀, there is a function 𝑓𝑓(𝑥𝑥) in 𝜙𝜙(𝔄𝔄) 

such that 𝑓𝑓(𝑥𝑥1) ≠ 𝑓𝑓(𝑥𝑥2). (ii) 𝜙𝜙 �1
ℎ

(𝑓𝑓 ∗ 𝑔𝑔 − 𝑔𝑔 ∗ 𝑓𝑓)� = 𝑙𝑙[𝜙𝜙(𝑓𝑓1),𝜙𝜙(𝑓𝑓2)] , where ∗ denotes the multiplication 
in 𝔄𝔄, [. , . ] is the Poisson bracket in 𝛢𝛢(𝑀𝑀), and 𝑙𝑙 = √−1. (3) . The unit of algebra 𝐴𝐴ћ is the function 
𝑓𝑓(ћ, 𝑥𝑥) ≡ 1. 

It is understood that this conceptualization of algebraic deformation quantization also involves and 
supports the four main old principles of QM that need to be recalled. Based on the legacy of both 
Heisenberg’s initial approach to quantum mechanics in 1925 and Bohr’s (1913) initial interpretation of the 
theory, offered in 1927, we have been provided with the following principles (A, Plotnitsky, 2016): (1) The 
principle of quantum discreteness (QD) states that all quantum phenomena, defined as what is observed 
through measuring instruments, are individual and discrete, which is not the same as the (Democretian) 
atomic discreteness of quantum objects themselves. This QD principle originated in Bohr’s 1913 theory of 
the hydrogen atom as based on “quantum postulates” of the discrete behavior (“quantum jumps”) of 
electrons in atoms; (2) the principle of quantum probabilistic and statistical (QPS) nature of quantum 
predictions states that all quantum predictions are of this nature, even in the case of elementary individual 
quantum processes and events, such as those associated with elementary particles; (3) the correspondence 
principle (CP), which was initially used by Bohr and others, stated that the predictions of quantum theory 
must coincide with those of classical mechanics at the classical limit when Planck’s constantћ → 0, but was 
given by Heisenberg a mathematical form, which required both the equation and variables used to be 
converted into those of classical mechanics at the classical limit; and (4) the principle of complementarity 
(PC), added to the first three principles. The complementarity principle says that parts never add up to a 
whole in the way they do in classical physics or relativity, given that at any moment only one of these parts 
could be ascertained, and hence is the only “whole” at this moment. In the formalism of quantum mechanics, 
the non-commutativity of the multiplication of the corresponding variables, as the position and momentum 
operators, could be seen as the mathematical expression of the complementarity principle. We intend to 
show the presence of some of these principles while expanding on and applying the QCG models to markets. 
However, instead of building a Hilbert space from a Poisson manifold and associating radical changes to 
original observables, we are only concerned with the algebras. After all, both systems can be studied in 
terms of their algebras. [3] It is proposed to deform the commutative standard product of algebra 𝐶𝐶∞(𝑀𝑀) 
into a non-commutative, associative product. To clarify the context in which we will develop the models, 
we define Poisson manifolds and formal deformation of associative algebras. 
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Definition C 
A Poisson manifold is a manifold 𝑀𝑀whose algebra 𝐴𝐴 = 𝐶𝐶∞(𝑀𝑀) of smooth functions on it is Poisson 

algebra with pointwise multiplication as a commutative product. Poisson algebra is a vector space 𝑉𝑉 
equipped with a commutative, associative product and a Lie bracket. In other words, for each 𝑓𝑓,𝑔𝑔, ℎ in 
𝐶𝐶∞(𝑀𝑀) the commutative product (𝑓𝑓,𝑔𝑔) → 𝑓𝑓𝑔𝑔 makes 𝑉𝑉 into a commutative algebra and the Poisson bracket 
(𝑓𝑓,𝑔𝑔) → {𝑓𝑓,𝑔𝑔}makes 𝑉𝑉into a Lie algebra that complies with the Jacobi Identity and Leibniz rule of 
derivation (see Endnotes). 
 
Definition D 

Fix a field K of characteristic zero. Let 𝐴𝐴 = 𝐶𝐶∞(𝑀𝑀) be an associative algebra, as above. A formal 
deformation of 𝐴𝐴 is an associative 𝐾𝐾⟦ћ⟧ −algebra structure on 𝐴𝐴⟦ћ⟧ such that 𝐴𝐴 ≃ 𝐴𝐴⟦ћ⟧/ћ as algebras. 
Establish that for any 𝑓𝑓,𝑔𝑔 ∈ 𝐴𝐴, 𝑓𝑓 ∗ 𝑔𝑔 = 𝑓𝑓𝑔𝑔 + 𝐵𝐵1(𝑓𝑓,𝑔𝑔)ћ + 𝐵𝐵2(𝑓𝑓,𝑔𝑔)ћ2+. . . +𝐵𝐵𝑛𝑛(𝑓𝑓,𝑔𝑔)ћ𝑛𝑛+. .., where: (1) the 
star product * is a deformed product in 𝐴𝐴extended to the algebra𝐴𝐴⟦ћ⟧ by the 𝐾𝐾⟦ћ⟧ -linearity, ∗
:𝐴𝐴⟦ћ⟧ × 𝐴𝐴⟦ћ⟧ → 𝐴𝐴⟦ћ⟧ which takes on the particular value on𝐴𝐴when the parameter of deformationћ → 0. 
In this case, 𝑓𝑓 ∗ 𝑔𝑔 = 𝑓𝑓𝑔𝑔 = 𝐵𝐵0(𝑓𝑓,𝑔𝑔). (2) 𝐵𝐵𝑛𝑛:𝐴𝐴⊗ 𝐴𝐴 → 𝐴𝐴 are bidifferential operators, i.e., bilinear maps 
which are differential operators for each argument.  
  
DEVELOPMENT OF QCG MODELS   
 

Returning to our goal, we organize this section as follows: Firstly, we construct Type I QCG Models, 
secondly, Type II QCG Models, and thirdly, Type III QCG Models. To initiate these developments, we fix 
a Poisson manifold  𝑀𝑀 = ℝ++

2 ⊂ ℝ2 ⊂ ℝ𝑑𝑑, where ℝ++
2 = ℝ+ × ℝ+ is the first quadrant subset of the plane 

ℝ2 on which the observables (classical and quantum), depending on the system’s state, are the set of smooth 
gradient functions 𝐶𝐶∞(𝑀𝑀) = {𝐺𝐺𝑘𝑘(𝑥𝑥): 𝑥𝑥 ≥ 0, 𝑘𝑘 = 1,2,3, . . . }. This Poisson manifold is our work’s 
fundamental framework. We use these models to study and explore a system’s evolution with these models 
in terms of both classical and quantum mechanics. 

The general procedure consists of starting with Definition A and constructing a commutative 
associative classical algebra. Then, proceed to deform this algebra to obtain noncommutative associative 
quantum algebras. Thereafter, we deal with purely formal algebraic structure properties of EGF. So, we 
begin with the classical one. 
 
Type I QCG Models  

In this case, the procedure is clear. It only requires the Poisson manifold ℝ++
2  and the smooth gradient 

functions 𝐺𝐺𝑘𝑘(𝑥𝑥) of level 𝑘𝑘 = 1,2,3, . .. 
 
Lemma 1 

If 𝐺𝐺2𝑘𝑘(𝑥𝑥) and 𝐺𝐺2𝑘𝑘−1(𝑥𝑥) are integrable gradient functions of even (odd) level, respectively, on the closed 
interval [0,1] and 0 ≤ 𝐺𝐺2𝑘𝑘−1(𝑥𝑥) ≤ 𝐺𝐺2𝑘𝑘(𝑥𝑥), for each level 𝑘𝑘, then 

 

0 ≤ � 𝐺𝐺2𝑘𝑘−1(𝑥𝑥)𝑑𝑑𝑥𝑥
1

0
≤ � 𝐺𝐺2𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥

1

0
 

 
This Lemma ensures the preservation of inequality under the integration – notice that its proof can be read 
in any calculus book (e.g., Larson R. et al., 2006, pg. 278). Here, we have adapted it to these particular 
gradient functions to support the following theorem. 
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Theorem H 
Let {𝐺𝐺𝑘𝑘(𝑥𝑥)} be a sequence of differentiable gradient functions of nonnegative terms on the closed 

interval [0,1]. Let {𝐺𝐺2𝑘𝑘(𝑥𝑥) } and {𝐺𝐺2𝑘𝑘−1(𝑥𝑥) } be two subsequences of {𝐺𝐺𝑘𝑘(𝑥𝑥)} such that 𝐺𝐺2𝑘𝑘−1(𝑥𝑥) ≤
𝐺𝐺2𝑘𝑘(𝑥𝑥) for each 𝑘𝑘 = 1,2,3, . .., then,

 
𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

�∫ (𝐺𝐺2𝑘𝑘(𝑥𝑥)1
0 − 𝐺𝐺2𝑘𝑘−1(𝑥𝑥))� → 0. 

We should call this theorem ‘Zipper Theorem’. In Figure 1, we see that all terms of this sequence meet 
at their fixed point (1, 1). Hence, their distance at this point is zero (the beginning of the open zipper). 
However, as 𝑥𝑥 gets closer and closer to zero from the right side, the distance between 𝐺𝐺2𝑘𝑘(𝑥𝑥) and 𝐺𝐺2𝑘𝑘−1(𝑥𝑥) 
becomes larger and larger, for each 𝑘𝑘. Fortunately, the distance between the boundaries of this gap is finite 
(such as a real zipper). In other words, the area bounded by an open zipper and the vertical 𝐺𝐺𝑘𝑘(𝑥𝑥) − axis 
gets smaller and smaller as 𝑘𝑘 takes on higher values. All these dynamic sequences of functions should be a 
setting for studying classical and quantum dynamic economics, i.e., financial markets. 
 
Proof 

Firstly, we show that the integral inside the absolute value on the closed interval [0,1] exists. However, 
this part of the proof is supported by Lemma 1. Secondly, we consider partitioning 0 = 𝑥𝑥0 < 𝑥𝑥1 < 𝑥𝑥2 <
. . . < 𝑥𝑥𝑖𝑖−1 < 𝑥𝑥𝑖𝑖 <. . . < 𝑥𝑥𝑛𝑛 = 1 of [0,1] into 𝑛𝑛 subintervals, each of width 𝛥𝛥𝑥𝑥 = 1

𝑛𝑛
. Let 𝑐𝑐𝑖𝑖 be the center of 

the ith subinterval. We can approximate the distance (height), ℎ𝑖𝑖 = 𝐺𝐺2𝑘𝑘(𝑐𝑐𝑖𝑖) − 𝐺𝐺2𝑘𝑘−1(𝑐𝑐𝑖𝑖) between the 
curves 𝐺𝐺2𝑘𝑘−1(𝑥𝑥) and 𝐺𝐺2𝑘𝑘(𝑥𝑥), involved in the ith subinterval. So, the area of this sub-rectangle is ℎ𝑖𝑖𝛥𝛥𝑥𝑥. 
Hence, through the Riemann sum, we can approximate the total area bounded below by the curve 𝐺𝐺2𝑘𝑘−1(𝑥𝑥), 
above by the curve 𝐺𝐺2𝑘𝑘(𝑥𝑥) , and the vertical axis, for each 𝑘𝑘 (see Figure 1). So, when the levels 𝑘𝑘 = 1,2,3, . .. 
of the functions 𝐺𝐺𝑘𝑘(𝑥𝑥) increase, the target of {𝐺𝐺2𝑘𝑘(𝑐𝑐𝑖𝑖)} decreases and the target of {𝐺𝐺2𝑘𝑘−1(𝑐𝑐𝑖𝑖)} increases 
on the interval [0,1] , by Lemma 1. So, they will meet somewhere within the limit when 𝑘𝑘 → ∞. Since 𝑐𝑐𝑖𝑖 
is arbitrary for 𝑙𝑙 = 1,2,3, . . . ,𝑛𝑛, it follows that: 
 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

|𝐺𝐺2𝑘𝑘(𝑐𝑐𝑖𝑖) − 𝐺𝐺2𝑘𝑘−1(𝑐𝑐𝑖𝑖)| = 0 or 𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘→∞

�∫ (𝐺𝐺2𝑘𝑘(𝑥𝑥)1
0 − 𝐺𝐺2𝑘𝑘−1(𝑥𝑥))� → 0.   □ 

 
To support this general concept, we now compute some areas between (below, above) the curves of 

𝐺𝐺𝑘𝑘(𝑥𝑥). These computations of integrals will show us the amazing relation between EGF 𝐺𝐺𝑘𝑘(𝑥𝑥) and several 
special mathematical functions and the passage from continuous to discrete, the QD principle. Thus, we 
transform some of the EGFs of the space Map (𝑋𝑋,𝑌𝑌), applying simple definite integral operators on the 
interval (0, 𝑏𝑏), as follows: 

 
∫ 𝐺𝐺𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑏𝑏
0 , when 𝑘𝑘 =1, 2, 3, 4… and 0 < 𝑥𝑥 ≤ 𝑏𝑏 < ∞  (2) 

 
For our purposes, we make use of the obvious case 𝐺𝐺1(𝑥𝑥) = 𝑥𝑥, which is the well-known elementary 

Identity Function who’s integral and applications are well known to all elementary calculus students. The 
interesting and intriguing results of integrals of gradient functions begin when 𝑘𝑘 = 2. In fact, starting with 
the integral in (2), we write its integrand as uniformly convergent power series and integrate term by term: 

 
∫𝐺𝐺2(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫ 𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥 = ∫ 𝑒𝑒𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥𝑑𝑑𝑥𝑥 =∫∑ (𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥)𝑝𝑝

𝑝𝑝!
𝑑𝑑𝑥𝑥∞

𝑝𝑝=0 = ∫𝑑𝑑𝑥𝑥 + ∫  𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥
1!

𝑑𝑑𝑥𝑥 + ∫  𝑥𝑥2 𝑙𝑙𝑛𝑛2 𝑥𝑥
2!

𝑑𝑑𝑥𝑥 + . ... 
 
Next, we evaluate each integral and associate their results by patterns: 
 

= �𝑥𝑥 −
𝑥𝑥2

22
+
𝑥𝑥3

33
−
𝑥𝑥4

44
+. . . � +

𝑙𝑙𝑛𝑛 𝑥𝑥
1!

�
𝑥𝑥2

2
−
𝑥𝑥3

32
+
𝑥𝑥4

43
−  ...� +

𝑙𝑙𝑛𝑛2 𝑥𝑥
2!

�
𝑥𝑥3

3
−
𝑥𝑥4

42
+  ...�+. .. 
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3

1

0

2

1 2

2 3

1

11) 1( 1) ln ( 1) ln ( ( )
1 21! 2!

ln ...
!

p

p
mp p

p pp

p m

p p p p mmx x
p p p m

pxx x x
p mp p p

x

=
== =

∞ ∞ ∞− −− ∞ ∞

= +

− −
− −− −

− − −
+ + +∑ ∑ ∑= = ∑ ∑  

 
Now, we shift the right-hand series to the origin, agreeing that 𝑛𝑛 = 𝑝𝑝 − 𝑙𝑙 − 1, and we obtain 
 
∫ 𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥 = ∑ 𝑙𝑙𝑛𝑛𝑚𝑚(𝑥𝑥)

𝑚𝑚!
∞
𝑚𝑚=0 ∑ (−1)𝑛𝑛𝑥𝑥𝑚𝑚+𝑛𝑛+1

(𝑚𝑚+𝑛𝑛+1)𝑛𝑛+1
∞
𝑛𝑛=0 = 𝐻𝐻(𝑙𝑙,𝑛𝑛 ;  𝑥𝑥)  (3)                       

 
It is a double series of functions 𝐻𝐻(𝑙𝑙,𝑛𝑛 ;  𝑥𝑥) that gives rise to two infinite families of function series. 

To be more precise, the infinite members of the 𝑙𝑙 −family of series arise varying 𝑙𝑙 from 0 to ∞ for each 
fixed 𝑛𝑛 = 0,𝑛𝑛 = 1,𝑛𝑛 = 2, . .. and the infinite members of the 𝑛𝑛 −family arise varying 𝑛𝑛 from 0 to ∞ for 
each fixed 𝑙𝑙 = 0,𝑙𝑙 = 1,𝑙𝑙 = 2, . .. . It is easy to show that the double series in (3) is decreasing and by 
the ratio test 𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑚𝑚,𝑛𝑛 = 0 as 𝑙𝑙,𝑛𝑛 tends to ∞. For a fixed 𝑥𝑥 = 𝑒𝑒𝑥𝑥𝑝𝑝( − 1), critical value of G2, some 
members from each family are plotted in Figure 2. 
 

FIGURE 2 
GEOMETRIC VISUALIZATION OF SOME MEMBERS OF THE (M,N) SERIES 

      

 
Plot of some series members of 𝐻𝐻(𝑙𝑙,𝑛𝑛 ;  𝑥𝑥), each for a fixed pair (𝑙𝑙,𝑛𝑛), where 𝑙𝑙,𝑛𝑛 = 0,1 . . . ,10. We can see shapes 
of polynomial functions and shapes of the product of polynomial and logarithmic functions providing an amazing 
picture of a “symmetrical fall”. The diagonal line is the identity function resulting when m=n=0. 
 

From (3), many interesting function series arise. Namely, for𝑙𝑙 = 0 or 𝑛𝑛 = 0, respectively, 
 
𝐻𝐻(0 ,𝑛𝑛 ;  𝑥𝑥) = ∑ (−1)𝑛𝑛−1𝑥𝑥𝑛𝑛

𝑛𝑛𝑛𝑛
∞
𝑛𝑛=1               and            𝐻𝐻(𝑙𝑙 , 0 ;  𝑥𝑥) = ∑ 𝑥𝑥𝑚𝑚+1 𝑙𝑙𝑛𝑛𝑚𝑚 𝑥𝑥

(𝑚𝑚+1)!
∞
𝑚𝑚=0   (4)   
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Notice that 𝐻𝐻(0 ,𝑛𝑛 ;  𝑥𝑥) is precisely a generalization of “Sophomore’s dream”, so that: 
 

∑ (−1)𝑛𝑛−1𝑥𝑥𝑛𝑛

𝑛𝑛𝑛𝑛
∞
𝑛𝑛=1 | 0

1 = 𝐻𝐻(0,𝑛𝑛 ;  1) − 𝐻𝐻(0,𝑛𝑛 ;  0) = 1 − 1
22

+. . .− 1
1010

= 40953336089635928267832533257
52274369621610823680000000000

   (5) 
     

A direct computation of the left-hand of (3) with Maple immediately verifies our result and, 
surprisingly, we can see that this integral relates to the integral-valued Gamma Function 𝛤𝛤(𝑛𝑛) and other 
special functions. As a special case, we have: 

 
∫ 𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥1
0 = ∑ (−1)𝑛𝑛(𝑛𝑛+1)−𝑛𝑛−1𝛤𝛤(𝑛𝑛+1)

𝑛𝑛!
∞
𝑛𝑛=0 = 32785

41848
≈ 0.783430510418658. ..  (6) 

 
So, the result in (5) agrees with the result in (6). Another interesting series arises when we set 𝑙𝑙 = 𝑛𝑛 in 
𝐻𝐻(𝑙𝑙,𝑛𝑛 ;  𝑥𝑥), with the ‘Diagonal Series’ of the lattice 𝑙𝑙 × 𝑛𝑛 for 𝑙𝑙,𝑛𝑛 = 0,1,2,3, . .. 
 
 𝐻𝐻(𝑛𝑛,𝑛𝑛 ;  𝑥𝑥) = 𝐻𝐻𝐷𝐷(𝑛𝑛, 𝑥𝑥) = ∑ (−1)𝑛𝑛𝑥𝑥2𝑛𝑛+1 𝑙𝑙𝑛𝑛𝑛𝑛 𝑥𝑥

𝑛𝑛! (2𝑛𝑛+1)𝑛𝑛+1
∞
𝑛𝑛=0     for 𝑥𝑥 > 0  (7) 

      
Notice that this series and the one on the right hand of (4) vanish for 𝑥𝑥 = 1, the fixed point of all 

gradient functions. Consistently, all series in (3) vanish when 𝑥𝑥 = 1, except the series on the left hand of 
(4), which is the only polynomial series in these infinite families. This explains why it is only this series 
which contributes rapidly to the approximation of the integral (6).  

Notice also that in (2), when 𝑘𝑘 = 3 and following the same strategy, we can evaluate the integral of 
third-level gradient function 𝐺𝐺3(𝑥𝑥) = 𝑥𝑥𝑥𝑥𝑥𝑥 for 𝑥𝑥 ≥ 0 as follows: 

 

�𝐺𝐺3(𝑥𝑥)𝑑𝑑𝑥𝑥 = �𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥 = �𝑒𝑒(𝑥𝑥𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥)𝑑𝑑𝑥𝑥 =��
(𝑥𝑥𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥)𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

𝑑𝑑𝑥𝑥 = ��
𝑥𝑥𝑞𝑞𝑥𝑥 𝑙𝑙𝑛𝑛𝑞𝑞 𝑥𝑥

𝑞𝑞!

∞

𝑞𝑞=0

𝑑𝑑𝑥𝑥 

= ∫∑ 𝑒𝑒(𝑞𝑞𝑥𝑥 𝑙𝑙𝑛𝑛𝑥𝑥) 𝑙𝑙𝑛𝑛𝑞𝑞 𝑥𝑥
𝑞𝑞!

∞
𝑞𝑞=0 𝑑𝑑𝑥𝑥 = ∫∑ ∑ (𝑞𝑞𝑥𝑥 𝑙𝑙𝑛𝑛 𝑥𝑥)𝑝𝑝 𝑙𝑙𝑛𝑛𝑞𝑞 𝑥𝑥

𝑝𝑝!  q!
𝑑𝑑𝑥𝑥∞

𝑝𝑝=0
∞
𝑞𝑞=0

 
= ∫∑ ∑ 𝑞𝑞𝑝𝑝𝑥𝑥𝑝𝑝 𝑙𝑙𝑛𝑛𝑝𝑝+𝑞𝑞 𝑥𝑥

𝑝𝑝!  q!
𝑑𝑑𝑥𝑥∞

𝑝𝑝=0
∞
𝑞𝑞=0  

 
Next, assuming conditions of convergence, we interchange summation and integration and proceed to 
evaluate: 
 

∫ 𝑥𝑥𝑥𝑥
𝑥𝑥𝑑𝑑𝑥𝑥 = ∑ ∑ 𝑞𝑞𝑝𝑝

𝑝𝑝! 𝑞𝑞!∫ 𝑥𝑥
𝑝𝑝 𝑙𝑙𝑛𝑛𝑝𝑝+𝑞𝑞 𝑥𝑥∞

𝑝𝑝=0
∞
𝑞𝑞=0 𝑑𝑑𝑥𝑥. 

 
Once again, we let 𝑏𝑏 = 1 in (2) and evaluate the definite integral, via Maple, obtaining: 
 
∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥1
0 = ∑ ∑ 𝑞𝑞𝑝𝑝

𝑝𝑝! 𝑞𝑞!
(−1)𝑝𝑝+𝑞𝑞(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)∞

𝑝𝑝=0
∞
𝑞𝑞=0 𝛤𝛤(𝑝𝑝 + 𝑞𝑞 + 1).  (8) 

 
Notice that if 𝑞𝑞 = 0 and 𝑝𝑝 > 0this double series vanishes to zero. Letting 𝑠𝑠 = 𝑝𝑝 + 1, we rewrite (8) 

and observe that this integral relates to the Gamma Function and also to the special widely-known Beta 
function 𝐵𝐵. Thus, we have: 

 

∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥1
0  = ∑ ∑ (−1)𝑞𝑞+𝑠𝑠−1𝑞𝑞𝑠𝑠−2 𝑠𝑠−(𝑞𝑞+𝑠𝑠)𝛤𝛤(𝑞𝑞+𝑠𝑠)

𝛤𝛤(𝑞𝑞)𝛤𝛤(𝑠𝑠)
∞
𝑠𝑠=1

∞
𝑞𝑞=1 . 

 
According to the relations 𝐵𝐵(𝑞𝑞, 𝑠𝑠) = 𝛤𝛤(𝑞𝑞)𝛤𝛤(𝑠𝑠)

𝛤𝛤(𝑞𝑞+𝑠𝑠)
 and 𝛼𝛼 ⋅ 𝛤𝛤(𝛼𝛼) = 𝛤𝛤(𝛼𝛼 + 1), (𝛼𝛼 >0), the latter expression 

implies: 
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∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥1
0 = ∑ ∑ (−1)𝑞𝑞+𝑠𝑠−1𝑞𝑞𝑠𝑠−2 𝑠𝑠−(𝑞𝑞+𝑠𝑠)

      𝐵𝐵(𝑞𝑞,𝑠𝑠)
∞
𝑠𝑠=1

∞
𝑞𝑞=1 = 𝐺𝐺(𝑞𝑞, 𝑠𝑠) = 0.5731215670  (9) 

 
Similar to the series in (7), this double series also contains two infinite families 𝐺𝐺(𝑞𝑞, 𝑠𝑠). One family of 
series rises for each fixed 𝑠𝑠 when 𝑞𝑞 varies from 1 to ∞ and the other family for each fixed 𝑞𝑞 when 𝑠𝑠 varies 
from 1 to ∞. Namely, fixing 𝑞𝑞 = 1, we have “Sophomore’s dream” again, and setting 𝑞𝑞 = 𝑠𝑠, the 
𝑑𝑑𝑙𝑙𝑎𝑎𝑔𝑔𝑑𝑑𝑛𝑛𝑎𝑎𝑙𝑙 𝑠𝑠𝑒𝑒𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠 𝛥𝛥(𝑠𝑠) 
 

𝐺𝐺(𝑠𝑠, 𝑠𝑠) = 𝛥𝛥(𝑠𝑠) = ∑ (−1)2𝑠𝑠−1 𝑠𝑠−(𝑆𝑆+2)

𝐵𝐵(𝑠𝑠,𝑠𝑠)
∞
𝑠𝑠=1  = ∑

(−1)2𝑠𝑠−1𝑠𝑠−𝑠𝑠−24𝑠𝑠𝛤𝛤(𝑠𝑠+12)

2√𝜋𝜋 𝛤𝛤(𝑠𝑠)
∞
𝑠𝑠=1 . 

 
One could continue this integration process on the interval 𝐼𝐼 = [0,1] for increasingly higher levels of 
gradients 𝐺𝐺𝑘𝑘(𝑥𝑥), with the help of Maple, and get the results shown in Table 1. 

This set of data in Table 1 gives us many insights regarding the natural inner properties of the envelope 
gradient functions. If we keep solving definite integrals on the uniform distribution, we get remarkable 
results. 
 

TABLE 1 
EXPLORATORY DATA ANALYSIS OF TYPE I QCG MODELS 

 
Area of the regions bounded by the graph of 𝐺𝐺𝑘𝑘(𝑥𝑥) and the 𝑥𝑥 -axis, between 0 and 1. 
𝑘𝑘 𝐺𝐺𝑘𝑘(𝑥𝑥) 

� 𝐺𝐺𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥
1

0
 

Meanings of each result in the square𝐼𝐼 × 𝐼𝐼 (see Figure 1) 

1 𝐺𝐺1(𝑥𝑥) = 𝑥𝑥 0.5000000000 The first odd level gradient, diagonal of the squared envelope; 50% 
of data remains below its curve. 

2 𝐺𝐺2(𝑥𝑥)
= 𝑥𝑥𝑥𝑥 

0.7834305107 The first even level gradient contains approximately 78.34% of data 
under its curve.  

3 𝐺𝐺3(𝑥𝑥)
= 𝑥𝑥𝑥𝑥𝑥𝑥 

0.5731215670 The second odd level gradient contains approximately 57.31% of 
data under its curve and 𝐺𝐺1(𝑥𝑥) ≤ 𝐺𝐺3(𝑥𝑥) 

4 𝐺𝐺4(𝑥𝑥)
= 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
 

0.7313397799 Approximately 73.13% of data is under 𝐺𝐺4 and 𝐺𝐺2(𝑥𝑥) ≥ 𝐺𝐺4(𝑥𝑥) 

5 𝐺𝐺5(𝑥𝑥)

= 𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥

 

0.5975776349 Approximately 59.76% of data and 𝐺𝐺1(𝑥𝑥) ≤ 𝐺𝐺3(𝑥𝑥) ≤ 𝐺𝐺5(𝑥𝑥) 

6 𝐺𝐺6(𝑥𝑥) = 0.7106589414 ≈ 71.07% of data and 𝐺𝐺2(𝑥𝑥) ≥ 𝐺𝐺4(𝑥𝑥) ≥ 𝐺𝐺6(𝑥𝑥) 
7 𝐺𝐺7(𝑥𝑥) = 0.6088236675 ≈ 60.88% of data and 𝐺𝐺1(𝑥𝑥) ≤ 𝐺𝐺3(𝑥𝑥) ≤ 𝐺𝐺5(𝑥𝑥) ≤ 𝐺𝐺7(𝑥𝑥) 
8 𝐺𝐺8(𝑥𝑥) = 0.7002371602 ≈ 70% of data and 𝐺𝐺2(𝑥𝑥) ≥ 𝐺𝐺4(𝑥𝑥) ≥ 𝐺𝐺6(𝑥𝑥) ≥ 𝐺𝐺8(𝑥𝑥) 
9 𝐺𝐺9(𝑥𝑥) = 0.6149950813 ≈ 61.50% of data, 𝐺𝐺1(𝑥𝑥) ≤ 𝐺𝐺3(𝑥𝑥) ≤ 𝐺𝐺5(𝑥𝑥) ≤ 𝐺𝐺7(𝑥𝑥) ≤ 𝐺𝐺9(𝑥𝑥) 
10 𝐺𝐺10(𝑥𝑥) = 0.6941860894 ≈ 69.42% of data, 𝐺𝐺2(𝑥𝑥) ≥ 𝐺𝐺4(𝑥𝑥) ≥ 𝐺𝐺6(𝑥𝑥) ≥ 𝐺𝐺8(𝑥𝑥) ≥ 𝐺𝐺10(𝑥𝑥) 
…  ………     ………                    …………………………… 
29 𝐺𝐺29(𝑥𝑥) = 0.6280216768 ≈ 62.80% of data and𝐺𝐺1(𝑥𝑥) ≤ 𝐺𝐺3(𝑥𝑥) ≤. . . .≤ 𝐺𝐺27(𝑥𝑥) ≤ 𝐺𝐺29(𝑥𝑥) 
30 𝐺𝐺30(𝑥𝑥) = 0.6803851519 ≈ 68.04% of data,  𝐺𝐺2(𝑥𝑥) ≥ 𝐺𝐺4(𝑥𝑥) ≥. . . .≥ 𝐺𝐺28(𝑥𝑥) ≥ 𝐺𝐺30(𝑥𝑥) 

We intend to publish these computations very soon (see Endnotes).  
 

Since we are dealing with a sequence 𝐺𝐺𝑘𝑘(𝑥𝑥): [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+of real-variable smooth functions, one 
can establish the following definition: 
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Definition of Type I QCG Models 
We recall the consequences of Definition A. Let {𝐺𝐺𝑘𝑘(𝑥𝑥), 𝑘𝑘 = 1,2,3, . . . } be a sequence of GCF that 

contains the subsequences {𝐺𝐺2𝑘𝑘−1(𝑥𝑥), 𝑘𝑘 = 1,2,3, . . . } and {𝐺𝐺2𝑘𝑘(𝑥𝑥), 𝑘𝑘 = 1,2,3, . . . }. We pick a member from 
each subsequence, for each fixed 𝑘𝑘, and define a set of models: 

 

𝛹𝛹𝑘𝑘(𝑥𝑥) = �
𝛼𝛼1 + 𝛼𝛼2𝐺𝐺2𝑘𝑘−1(𝑥𝑥)  , (𝛼𝛼1 ≥ 0,𝛼𝛼2>0)
𝛽𝛽1 + 𝛽𝛽2𝐺𝐺2𝑘𝑘(𝑥𝑥)  ,     (𝛽𝛽1,𝛽𝛽2>0)   (10) 

 
These models involve members chosen one from each subsequence (see Figure 3a and 3b). But we also 
could construct models selecting both members either from even levels or odd levels, for distinct purposes 
of the study. We will return to (10) in the next section. 
 
QCG Type II Models 
 
Proposition 1. The set of all smooth gradient functions {𝐺𝐺𝑘𝑘(𝑥𝑥)} defined pointwise on the half-real line ℝℝ+ 
is a linear vector space under scalar multiplication and pointwise addition, given by 𝜑𝜑𝑖𝑖𝑖𝑖(𝑥𝑥) = 𝛼𝛼𝐺𝐺𝑖𝑖(𝑥𝑥) +
𝛽𝛽𝐺𝐺𝑖𝑖(𝑥𝑥), where 𝛼𝛼,𝛽𝛽are real numbers and 𝑙𝑙, 𝑗𝑗 = 1,2,3, . .. This vector space is an associative algebra under 
pointwise multiplication of functions 𝛷𝛷𝑖𝑖𝑖𝑖(𝑥𝑥) = 𝐺𝐺𝑖𝑖(𝑥𝑥) × 𝐺𝐺𝑖𝑖(𝑥𝑥). 
 
Proof 

Let 𝐺𝐺0 = 0,𝐺𝐺1,𝐺𝐺2, . . .∈ 𝐶𝐶∞(ℝ++
2 ) be a collection of gradient functions and let 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, . . .∈ ℝ be 

scalars in the real field. We can easily verify that (𝐶𝐶∞(ℝ++
2 ), +) is an abelian group under +, with the 

identity 𝐺𝐺0. Also, (𝐶𝐶∞(ℝ++
2 ), +, ) complies with four additional postulates under scalar multiplication . For 

the third operation ×, for any 𝑙𝑙, 𝑗𝑗, the following is clearly valid: closure, if 𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖 ∈ 𝐶𝐶∞(𝑥𝑥) → 𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑖𝑖 ∈
𝐶𝐶∞(𝑥𝑥). Bilinearity is obvious and associative with (𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑖𝑖) × 𝐺𝐺𝑟𝑟 = 𝐺𝐺𝑖𝑖 × (𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑟𝑟); the existence of 
identity is an optional property; symmetry under interchange is met with 𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑖𝑖 = 𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑖𝑖; and derivative 
property is given with 𝐺𝐺𝑖𝑖 × (𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑟𝑟) = (𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑖𝑖) × 𝐺𝐺𝑟𝑟 + 𝐺𝐺𝑖𝑖 × (𝐺𝐺1 × 𝐺𝐺𝑟𝑟). Hence, (𝐶𝐶∞(ℝ++

2 ), +, ,×) is an 
associative and commutative algebra of smooth gradient functions. ⊲ 
 
Definition of Type II QCG Models 

Let {𝐺𝐺𝑘𝑘(𝑥𝑥): 𝑘𝑘 = 1,2,3, . . . } be a sequence of smooth gradient functions which are elements of the 
algebra meeting Proposition 1. We define a family of Type II QCG Models with: 

 

𝛩𝛩𝑘𝑘(𝑥𝑥) = �𝛼𝛼1𝐺𝐺2𝑘𝑘−1(𝑥𝑥) + 𝛼𝛼2𝐺𝐺2𝑘𝑘+1(𝑥𝑥) + 𝛼𝛼1𝛼𝛼2𝐺𝐺2𝑘𝑘−1(𝑥𝑥) × 𝐺𝐺2𝑘𝑘+1(𝑥𝑥), (𝛼𝛼1,𝛼𝛼2 > 0)
𝛽𝛽1𝐺𝐺2𝑘𝑘(𝑥𝑥) + 𝛽𝛽2𝐺𝐺2𝑘𝑘+2(𝑥𝑥) + 𝛽𝛽1𝛽𝛽2𝐺𝐺2𝑘𝑘(𝑥𝑥) × 𝐺𝐺2𝑘𝑘+2(𝑥𝑥), (𝛽𝛽1,𝛽𝛽2 > 0)   (11) 

 
E.g., for 𝑘𝑘 = 1, 𝛩𝛩1(𝑥𝑥) = 2𝑥𝑥 + 3𝑥𝑥𝑥𝑥𝑥𝑥 + 6𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥   is of odd levels and 𝛩𝛩1(𝑥𝑥) = 3𝑥𝑥𝑥𝑥 + 5𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
+ 15𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
  

is of even levels, the alpha-curve and the beta-curve, respectively. 
 
Proposition 2. There is a one-to-one amalgamated correspondence between odd level models and even 
level models defined in (10), (11), (12), and (13). 
 
Proof 

It is easy to exhibit a one-to-one correspondence between these types of sets of models and the set of 
positive integers. Consider the functions 𝑓𝑓(𝑘𝑘) = 2𝑘𝑘 − 1 and 𝑔𝑔(𝑘𝑘) = 2𝑘𝑘 from ℤ+ onto the set of odd levels 
{𝐺𝐺2𝑘𝑘−1} and the set of even levels {𝐺𝐺2𝑘𝑘}, respectively. These functions are one-to-one and onto. 
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⊲ 

◻+    ⟶
𝜕𝜕

{𝐺𝐺2𝑘𝑘−1}    𝑘𝑘: 1,2,3,4, … ,    ↓
g ◻    ◻ ℎ    2𝑘𝑘 − 1: 1,3,5,7, … ,    ↓
    {𝐺𝐺2𝑘𝑘}    2𝑘𝑘: 2,4,6,8, … ,    ↲

  

 
The next proposition gives a special consequence of the general definition of these models.   
 
Proposition 3. If we let 𝜏𝜏2𝑘𝑘(𝑥𝑥) = 𝛽𝛽1𝐺𝐺2𝑘𝑘(𝑥𝑥) + 𝛽𝛽2𝐺𝐺2𝑘𝑘+2(𝑥𝑥) + 𝛽𝛽1𝛽𝛽2𝐺𝐺2𝑘𝑘(𝑥𝑥) × 𝐺𝐺2𝑘𝑘+2(𝑥𝑥) be a set of even level 
of  𝛽𝛽 -curve QCG Models, then 

 

𝛩𝛩𝑘𝑘(𝑥𝑥) = �
𝛼𝛼1𝐺𝐺2𝑘𝑘−1(𝑥𝑥) + 𝛼𝛼2𝐺𝐺2𝑘𝑘+1(𝑥𝑥) + 𝛼𝛼1𝛼𝛼2𝐺𝐺2𝑘𝑘−1(𝑥𝑥) × 𝐺𝐺2𝑘𝑘+1(𝑥𝑥), (𝛼𝛼1,𝛼𝛼2 > 0)
(𝛽𝛽1 + 𝛽𝛽2)2 − 𝜏𝜏2𝑘𝑘(𝑥𝑥), (𝛽𝛽1,𝛽𝛽2 > 0)   (12) 

 
The proof is simply a reflected transformation of a closed envelope into an open envelope, as we show in 
the next section. To have a concrete geometrical view, see figures 4a and 4b.  
 
Type III QCG Models  

In this section, additionally to the previous elements of the type I and II models, we use definitions B, 
C, and D. Our purpose is to deform the algebra 𝐶𝐶∞(ℝ++

2 ) stated in Proposition 1 to 𝐶𝐶∗∞(ℝ++
2 ) algebra.  

We start with the pointwise commutative product × on 𝐶𝐶∞(ℝ++
2 ) and we want to define a family of 

products ∗ћ depending on a parameterћ such that when ћ = 0, ∗0=×. I.e., we ask for the expression ∗ћ to 
be a formal power series, so we do not need to worry about convergence. However, then 𝐺𝐺𝑖𝑖 × 𝐺𝐺𝑗𝑗is no longer 
in 𝐶𝐶∞(ℝ++

2 ), but in 𝐶𝐶∗∞(ℝ++
2 )⟦ћ⟧. It seems confusing, since we expect a product to involve two elements 

in the algebra 𝐶𝐶∞(ℝ++
2 ) and give an element in the same algebra. To solve this, one can extend the product 

to the 𝐶𝐶∗∞(ℝ++
2 )⟦ћ⟧ algebra by ℝ⟦ћ⟧- linearity, by Definition D. Hereinafter, ћ is no longer a parameter, 

but a formal variable. We are thus ready to define the models. 
 
Definition of Type III QCG Models   

Let ⟨𝐶𝐶∞(ℝ++
2 ), +, ,×⟩ be a commutative and associative algebra or simply 𝐶𝐶∞(ℝ++

2 ), established in 
Proposition 1. Let 𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖 ∈ 𝐶𝐶∞(ℝ++

2 ) be smooth gradient real-valued functions of level 𝑙𝑙 and 𝑗𝑗, respectively. 
We define a family of Type III QCG Models, denoted by 𝐺𝐺𝑖𝑖 ∗ћ 𝐺𝐺𝑗𝑗 = 𝐺𝐺𝑖𝑖 ∗ 𝐺𝐺𝑗𝑗 = ϒ𝑘𝑘, as                                                                                                                                   
 

ϒ𝑘𝑘 = �
∑ 1

𝑛𝑛!
ћ𝑛𝑛

2𝑛𝑛
𝐵𝐵𝑛𝑛(𝐺𝐺2𝑘𝑘−1,𝐺𝐺2𝑘𝑘+1), for odd level of 𝐺𝐺𝑖𝑖`𝑠𝑠∞

𝑛𝑛=0

−∑ 1
𝑛𝑛!
ћ𝑛𝑛

2𝑛𝑛
𝐵𝐵𝑛𝑛(𝐺𝐺2𝑘𝑘 ,𝐺𝐺2𝑘𝑘+2), for even level of 𝐺𝐺𝑖𝑖`𝑠𝑠∞

𝑛𝑛=0

  (13) 

 
where 𝐵𝐵𝑛𝑛 is either a Poisson bivector or a bidifferential operator based on definition D. In particular, 
𝐵𝐵0(𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖) = 𝐺𝐺𝑖𝑖𝐺𝐺𝑖𝑖 is the ordinary commutative product in the classical limit of ћ → 0 and 𝐵𝐵1(𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖) =

{𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖} = 𝜕𝜕𝐺𝐺𝑖𝑖
𝜕𝜕𝑞𝑞

𝜕𝜕𝐺𝐺𝑗𝑗
𝜕𝜕𝑝𝑝

− 𝜕𝜕𝐺𝐺𝑖𝑖
𝜕𝜕𝑝𝑝

𝜕𝜕𝐺𝐺𝑗𝑗
𝜕𝜕𝑞𝑞

 is the Poisson bracket. More generally, 𝐵𝐵𝑛𝑛(𝐺𝐺𝑖𝑖 ,𝐺𝐺𝑖𝑖) =

∑ (−1)𝑟𝑟𝑛𝑛
𝑟𝑟=0 ( 𝑟𝑟

𝑛𝑛) � 𝜕𝜕𝑟𝑟

𝜕𝜕𝑝𝑝𝑟𝑟
𝜕𝜕𝑛𝑛−𝑟𝑟

𝜕𝜕𝑞𝑞𝑛𝑛−𝑟𝑟
𝐺𝐺𝑖𝑖� × � 𝜕𝜕𝑛𝑛−𝑟𝑟

𝜕𝜕𝑝𝑝𝑛𝑛−𝑟𝑟
𝜕𝜕𝑟𝑟

𝜕𝜕𝑞𝑞𝑟𝑟
𝐺𝐺𝑖𝑖�. Here, (𝑞𝑞𝑠𝑠,𝑝𝑝𝑠𝑠) are canonical coordinates on the phase 

space ℝ++
2 . For an illustration, see the next section. 

 
SUPPORTING METHODOLOGY AND APPLICATIONS 
 

Here we present the simplest concrete cases of these infinite three types of QCG Models to show how 
they help us in the exploratory analysis of financial markets. A variety of well-known topics in business are 
focused on this new point of view. The frame of our work ℝ++

2 ⊂ ℝ𝑑𝑑 is also the simplest two-dimensional 
Poisson manifold, phase space. We present one case for each type of QCG Model, starting with Type I.  
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Let us take equation (10) and make some changes to its general structure. The reader may already 
suspect what famous law of economics these equations look like: 

 

𝛹𝛹𝑘𝑘(𝑥𝑥) = �
−𝛼𝛼1 + 𝛼𝛼2𝐺𝐺2𝑘𝑘−1(𝑥𝑥)  , (𝛼𝛼1 ≥ 0,𝛼𝛼2>0)
𝛽𝛽1 − 𝛽𝛽2𝐺𝐺2𝑘𝑘(𝑥𝑥)  ,     (𝛽𝛽1,𝛽𝛽2>0)  (14) 

 
Let’s include the condition of equilibrium into these models: the point where the 𝛼𝛼 -curves and the 𝛽𝛽 -
curves meet. That is, −𝛼𝛼1 + 𝛼𝛼2𝐺𝐺2𝑘𝑘−1(𝑥𝑥) = 𝛹𝛹𝑘𝑘(𝑥𝑥) = 𝛽𝛽1 − 𝛽𝛽2𝐺𝐺2𝑘𝑘(𝑥𝑥). From these three equations, we 
establish the law of supply and demand and find the equilibrium solutions of endogenous variables, as 𝑥𝑥 
denotes the price of a good in the market. Concretely, we proceed to start with 𝑘𝑘 = 1, 𝑘𝑘 = 2, and so on, as 
follows:  
 

 𝛹𝛹1(𝑥𝑥) �
−𝛼𝛼1 + 𝛼𝛼2𝑥𝑥 , 𝑥𝑥 ≥ 0
𝛽𝛽1 − 𝛽𝛽2𝑥𝑥𝑥𝑥 , 𝑥𝑥 ≥ 0    and − 𝛼𝛼1 + 𝛼𝛼2𝑥𝑥 = 𝛽𝛽1 − 𝛽𝛽2𝑥𝑥𝑥𝑥  (15) 

 

 𝛹𝛹2(𝑥𝑥) �
−𝛼𝛼1 + 𝛼𝛼2𝑥𝑥𝑥𝑥

𝑥𝑥 , 𝑥𝑥 ≥ 0

𝛽𝛽1 − 𝛽𝛽2𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥  , 𝑥𝑥 ≥ 0

   and − 𝛼𝛼1 + 𝛼𝛼2𝑥𝑥𝑥𝑥
𝑥𝑥 = 𝛽𝛽1 − 𝛽𝛽2𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥   (16) 

 
where the parameters 𝛼𝛼and 𝛽𝛽 are not necessarily the same and may be chosen arbitrarily considering a 
specific interaction in the markets. At this point, we have a whole range of supply and demand models to 
analyze the equilibrium of markets in economics, the equilibrium of national income, and other financial 
variables. Also, one can use these models to study the behavior of a single good in a single market, many 
goods in a single market, as well as many goods in many markets, simultaneously. Furthermore, the best 
aspect of these models is that they all comply with the rules of standard and stochastic calculus. See the 
natural behavior of shapes of (15), which give rise to all well-known areas studied in economics, for some 
specific parameter values. We solve the equilibrium equation 𝛹𝛹𝑠𝑠(𝑥𝑥) = 𝛹𝛹𝑑𝑑(𝑥𝑥) and we find the point 
E(2.6,10) (see Figure 3a). Notice that, in order to keep the meaning of a function, we have plotted without 
switching the axis around. 
 

FIGURE 3A 
MARKET STATIC EQUILIBRIUM TYPE 1 MODEL FOR k=1 

 
Similarly, we proceed to model (16). One can arbitrarily choose some parameter values selecting data from 
the markets and solving the equations. In this case, we have: 
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𝛹𝛹2(𝑥𝑥) �
−0.5 + 2𝑥𝑥𝑥𝑥𝑥𝑥 , 𝑥𝑥 ≥ 0
14 − 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
 , 𝑥𝑥 ≥ 0

   and − 0.5 + 2𝑥𝑥𝑥𝑥𝑥𝑥 = 14 − 𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥
 

 
In this case, we have solved the equilibrium equation−0.5 + 2𝑥𝑥𝑥𝑥𝑥𝑥 = 14 − 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥
 by applying the 

numerical approximation method, obtaining the equilibrium point E(1.7, 7). The quantity has to be an 
integer number. It means that if the price of a good or service is $1.7, then the quantity of a good or service 
supplied by producers is 7 units of goods or services and it is equal to the quantity demanded by consumers. 
We illustrate these shapes of the curves and show the results in  Figure 3b. 
 
Corollary 1 

Take the statement of Theorem H and Proposition 2. In equation (14), (17), and (21), for each 𝑘𝑘 =
1,2,3, . .., there is a 1 to 1 correspondence between the Law of Supply (𝛼𝛼 −curves) and the Law of Demand 
(𝛽𝛽 −curves). The proof is the same as proposition 2. ⊲ 
 

FIGURE 3B 
MARKET STATIC EQUILIBRIUM TYPE 1 MODEL FOR k=2 

 
Next, we present a specific application of Type II GCF models. Here, we use Definition A, the definition 
in (11) and we take Proposition 3 as a special case. Let’s take the simplest case 𝑘𝑘 = 1 and 𝑘𝑘 = 2: 
 

𝛩𝛩1(𝑥𝑥) = �
𝛼𝛼1𝐺𝐺1(𝑥𝑥) + 𝛼𝛼2𝐺𝐺3(𝑥𝑥) + 𝛼𝛼1𝛼𝛼2𝐺𝐺1(𝑥𝑥)𝐺𝐺3(𝑥𝑥)
(𝛽𝛽1 + 𝛽𝛽2)2 − 𝛽𝛽1𝐺𝐺2(𝑥𝑥) − 𝛽𝛽2𝐺𝐺4(𝑥𝑥) − 𝛽𝛽1𝛽𝛽2𝐺𝐺2(𝑥𝑥)𝐺𝐺4(𝑥𝑥)   (17) 

 

𝛩𝛩2(𝑥𝑥) = �
𝛼𝛼1𝐺𝐺3(𝑥𝑥) + 𝛼𝛼2𝐺𝐺5(𝑥𝑥) + 𝛼𝛼1𝛼𝛼2𝐺𝐺3(𝑥𝑥)𝐺𝐺5(𝑥𝑥)
(𝛽𝛽1 + 𝛽𝛽2)2 − 𝛽𝛽1𝐺𝐺4(𝑥𝑥) − 𝛽𝛽2𝐺𝐺6(𝑥𝑥) − 𝛽𝛽1𝛽𝛽2𝐺𝐺4(𝑥𝑥)𝐺𝐺6(𝑥𝑥) (18) 

       ………………. 
 
We may study a wide variety of market dynamics through the application of these models choosing some 
𝛼𝛼 and 𝛽𝛽 parameter values, according to the researcher’s purpose. To keep our goal, we focus on the law of 
supply and demand for 𝛼𝛼1 = 2,𝛼𝛼2 = 𝛽𝛽1 = 3,𝛽𝛽2 = 5: 
 

𝛩𝛩1(𝑥𝑥) = �2𝑥𝑥 + 3𝑥𝑥𝑥𝑥𝑥𝑥 + 6𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥

64 − 3𝑥𝑥𝑥𝑥 − 5𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥
− 15𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥    (19) 
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𝛩𝛩2(𝑥𝑥) = �2𝑥𝑥
𝑥𝑥𝑥𝑥 + 3𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥

+ 6𝑥𝑥𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥

64 − 3𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥
− 5𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥
𝑥𝑥

− 15𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥
⋅ 𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥
𝑥𝑥   (20) 

 
Plotting their graphs, we amazingly see again all traditional areas on which the laws of economics and 

finance interact. But, in this case, since we deal with GCFs, elements of an associative algebra 𝐶𝐶(ℝ++
2 ), the 

analysis of economics is the classical dynamical field. One should consider𝑥𝑥the price of a good and 𝑥𝑥(𝑡𝑡) 
the price depending on time, and we can study the specific trajectories of instantaneous market changes 
over time. Again, the standard differential and integral calculus is the right tool. For a vision of the picture 
underlying this analytical approach, a mapped Poisson manifold ℝ++

2 , see Figure 4a-4b.  
 

FIGURE 4A 
DYNAMIC EQUILIBRIUM TYPE 2 MODEL FOR k=1 

 
 
To find the equilibrium point 𝐸𝐸(1.33,18 or 19), we have solved the equation 𝛩𝛩𝑠𝑠(𝑥𝑥) = 𝛩𝛩𝑑𝑑(𝑥𝑥) by 

applying the numerical approximation method with Mathematica and verifying it with Maple. It means that 
if the price of a good or service is $1.3281, then producers supply 18 or 19 units of goods or services and 
it is equal to the quantity demanded by consumers. We illustrate these shapes of the curves and show the 
results in  Figure 4a. 
 

FIGURE 4B 
DYNAMIC EQUILIBRIUM TYPE 2 MODEL FOR k=2 
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Once again, the equilibrium point 𝐸𝐸(1.3,20) is determined solving the equation 𝛩𝛩𝑠𝑠(𝑥𝑥) = 𝛩𝛩𝑑𝑑(𝑥𝑥) by 
using the numerical approximation method with Mathematica and Maple (see illustration in Figure 4b). 

Next, we explain a specific case of Type III GCF Models. But now we apply these models in the 
quantum field. Punctually, we want to deform the associative algebra defined on a Poisson manifold ℝ++

2 , 
the phase space, whose observable of the markets are the smooth functions. From its definition (13), they 
can be written as: 

 

ϒ𝑘𝑘(𝑥𝑥) = �
𝐵𝐵0(𝐺𝐺2𝑘𝑘−1,𝐺𝐺2𝑘𝑘+1) + ℏ𝐵𝐵1(𝐺𝐺2𝑘𝑘−1,𝐺𝐺2𝑘𝑘+1) + 𝜗𝜗(ℏ2)         𝛼𝛼-curve
−𝐵𝐵0(𝐺𝐺2𝑘𝑘 ,𝐺𝐺2𝑘𝑘+2) + ℏ𝐵𝐵1(𝐺𝐺2𝑘𝑘 ,𝐺𝐺2𝑘𝑘+2) + 𝜗𝜗(ℏ2)           𝛽𝛽-curve

                                             (21) 

 
The term 𝜗𝜗(ℏ2) is a truncation of ϒ𝑘𝑘(𝑥𝑥) that contains the rest of the terms of the formal power series. We 
consider Dirac’s original scheme (Dirac P.A.M. 1930) of deformation quantization and (13) can only be 
taken up to its linear term, while (21) will be a good approximation to the complete deformation. In 
particular: 
 

ϒ𝑘𝑘(𝑥𝑥) = �
𝐺𝐺2𝑘𝑘−1𝐺𝐺2𝑘𝑘+1 + ℏ(𝜕𝜕𝐺𝐺2𝑘𝑘−1

𝜕𝜕𝑞𝑞
𝜕𝜕𝐺𝐺2𝑘𝑘+1
𝜕𝜕𝑝𝑝

− 𝜕𝜕𝐺𝐺2𝑘𝑘−1
𝜕𝜕𝑝𝑝

𝜕𝜕𝐺𝐺2𝑘𝑘+1
𝜕𝜕𝑞𝑞

)

−𝐺𝐺2𝑘𝑘𝐺𝐺2𝑘𝑘+2 + ℏ(𝜕𝜕𝐺𝐺2𝑘𝑘
𝜕𝜕𝑞𝑞

𝜕𝜕𝐺𝐺2𝑘𝑘+2
𝜕𝜕𝑝𝑝

− 𝜕𝜕𝐺𝐺2𝑘𝑘
𝜕𝜕𝑝𝑝

𝜕𝜕𝐺𝐺2𝑘𝑘+2
𝜕𝜕𝑞𝑞

)
 (22) 

 
The simplest case for 𝑘𝑘 = 1: 
 

ϒ1(𝑥𝑥) =

⎩
⎨

⎧𝐺𝐺1𝐺𝐺3 + ℏ(
𝜕𝜕𝐺𝐺1
𝜕𝜕𝑞𝑞

𝜕𝜕𝐺𝐺3
𝜕𝜕𝑝𝑝

−
𝜕𝜕𝐺𝐺1
𝜕𝜕𝑝𝑝

𝜕𝜕𝐺𝐺3
𝜕𝜕𝑞𝑞

)

−𝐺𝐺2𝐺𝐺4 + ℏ(
𝜕𝜕𝐺𝐺2
𝜕𝜕𝑞𝑞

𝜕𝜕𝐺𝐺4
𝜕𝜕𝑝𝑝

−
𝜕𝜕𝐺𝐺2
𝜕𝜕𝑝𝑝

𝜕𝜕𝐺𝐺4
𝜕𝜕𝑞𝑞

)
=

⎩
⎪
⎨

⎪
⎧𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥 + ℏ(

𝜕𝜕𝑥𝑥
𝜕𝜕𝑞𝑞

𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝑝𝑝
−
𝜕𝜕𝑥𝑥
𝜕𝜕𝑝𝑝

𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝑞𝑞
)

−𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥

+ ℏ(
𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥

𝜕𝜕𝑝𝑝
−
𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥

𝜕𝜕𝑞𝑞
)

 

 
Here, 𝑞𝑞 and 𝑝𝑝 are canonical coordinates, presented above. We remark that 𝐺𝐺𝑖𝑖(𝑥𝑥) = 𝐺𝐺𝑖𝑖(𝑞𝑞,𝑝𝑝; 𝑥𝑥). E.g., we 
should name 𝑞𝑞 = position operator (price at a specific date) and 𝑝𝑝 =impulsion operator (time at which a 
price changes). The formal expansion (deformation) depends on the variable ℏ and it is any positive real 
number. One can assign many real values and analyze the conduct and properties of ϒ1(𝑥𝑥). The exceptional 
case occurs when ℏ = 0. We return to classical mechanics, classical economics. It is the correspondence 
principle of QM. We plot this case with a little modification, see Figure 5, and, again, we find the domain 
of interaction of the law of supply and demand, the 𝛼𝛼 −curve and the 𝛽𝛽 −curve, respectively. 

 
FIGURE 5 

QUANTUM EQUILIBRIUM TYPE 3 MODEL FOR k=1 AND h=0 
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The 𝜶𝜶𝜶𝜶 Conjecture 
Let 𝐶𝐶∞(𝑀𝑀) be an associative algebra of smooth functions on a Poisson manifold 𝑀𝑀 The (𝛼𝛼 −curve 

equations) – (𝛽𝛽 -curve equations) = 0 is the quantum equilibrium of the law of supply and demand in the 
markets. This could also be valid for other natural laws. 

 
CONCLUSIONS 
 

In this paper, we have built and described a few types of quantum continuous gradient models (QCGM) 
to study and analyze the interaction of economic variables from two points of view: the classical mechanics 
(type I and type II models) and quantum mechanics (type III models). In particular, we have focused on the 
variables that describe the behavior of goods and services in financial markets. This infinite set of models 
has been built on a Poisson manifold ℝ++

2 whose basic ingredient is a sequence of continuous gradient 
functions {𝐺𝐺𝑘𝑘(𝑥𝑥): 𝑘𝑘 = 1,2,3, . . . } bifurcated into two subsequences {𝐺𝐺2𝑘𝑘−1(𝑥𝑥): 𝑘𝑘 = 1,2,3, . . . } and 
{𝐺𝐺2𝑘𝑘(𝑥𝑥): 𝑘𝑘 = 1,2,3, . . . }, Lemma 1 and Theorem H. These QCG Models have been classified into three 
families: Type I models, Type II models, and Type III models. In the study process, it has been observed 
that for each level of order 𝑘𝑘 in every three types of models, 𝛹𝛹𝑘𝑘 ,𝛩𝛩𝑘𝑘 , and ϒ𝑘𝑘, there is an injective 
correspondence between an element of odd order (𝛼𝛼 -curve) with another element of even order (𝛽𝛽 -curve) 
and they meet at the equilibrium point, demonstrated in Proposition 2. A special case focused on the law of 
supply and demand shown in corollary 1. From the point of view of economics, models of type A are static 
classical models that show us an underlying framework of work traditional in economics and finance over 
which any economic variable can be studied. For example, the case of the supply and demand curves shows 
us different regions in figures 3a and 3b that have economic, financial, and probabilistic statistical 
significance, shown in Table 1. A more exhaustive treatment of the study of this type of model would lead 
to the analysis of optimization of these regions, through this family of models, but it was not the goal of 
this study. However, another study on that topic will be published soon. 

Type II models are dynamic models that involve, in their structure, the time variable 𝑡𝑡 and 𝑋𝑋(𝑡𝑡) as 
trajectories and because the original elements 𝐺𝐺𝑘𝑘(𝑥𝑥) are now elements of an associative algebraic structure, 
Proposition 1. These Type II models are more general than Type I models. 

Finally, the Type III models are quantum dynamic models obtained by deformation of the underlying 
frame of Type II models, the associative algebra 𝐶𝐶∞(ℝ++

2 ) of {𝐺𝐺𝑘𝑘(𝑥𝑥)}. This could be a case of connection 
between the economic models of classical mechanics and the models of quantum mechanics. We have 
explained very little about the deep and complex contents of this Type III model, focusing on the 
generalized supply and demand law. Further results will be presented in the next part of this paper.  
 
RECOMMENDATIONS  
 

It is well known from econophysics that  classical economics and quantum economics are two worlds 
in which variables such as price, supply, demand, and whatever is the variable one wants to study interact. 
It is also well known that phenomena in the quantum description are more detailed than the classical one. 
Thus, we recommend to keep researching in this sense because it should be the most robust and complete 
horizon of economics and finance.  

Furthermore, we dare to conjecture that Type III models are a generalization of the previous ones, but 
their development is very difficult even though we use mathematical software. For example, if we analyze 
the behavior of the supply and demand curves in the three types of models, we see that the Type II and 
Type III models are more general in the sense that they show the demand curve with a positive (describing 
the diamond and Veblen goods demand) and negative slope, therefore zero slopes, and possible infinite 
slope as the price of a good or service changes over time. The proposal of these models is at the discretion 
of the authors, and we believe that this is possibly a new path where modern economy is studied within a 
quantum context. We have represented models mathematically using quantum deformation theory. 
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However, there is still a whole universe to discover and develop in this open field of the quantum theory of 
equilibrium, considering the 𝛼𝛼𝛽𝛽 -conjecture. 

Finally, we suggest looking for other economic and financial meanings of these definite integrals. In 
particular the one presented in Table 1, page 9, from equation (2). 

Letting 𝑏𝑏 = 𝑒𝑒−1 in (2), we solve the integral:  
 

� 𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥
1
𝑒𝑒

0
= ��

𝑞𝑞𝑝𝑝

𝑝𝑝!  𝑞𝑞!

∞

𝑝𝑝=0

∞

𝑞𝑞=0

 � (𝑥𝑥𝑝𝑝 𝑙𝑙𝑛𝑛𝑝𝑝+𝑞𝑞 𝑥𝑥)𝑑𝑑𝑥𝑥
1
𝑒𝑒

0
 

= ��𝛷𝛷(𝑝𝑝, 𝑞𝑞)
∞

𝑝𝑝=0

∞

𝑞𝑞=0

⎝

⎜
⎜
⎜
⎛

(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+22 )𝑒𝑒−(𝑝𝑝+12 )𝑊𝑊ℎ𝑙𝑙𝑡𝑡𝑡𝑡𝑎𝑎 𝑘𝑘𝑒𝑒𝑠𝑠𝑀𝑀 (
𝑝𝑝 + 𝑞𝑞

2
,
𝑝𝑝 + 𝑞𝑞 + 1

2
, 𝑝𝑝 + 1)𝛤𝛤(−𝑝𝑝 − 𝑞𝑞) 𝑠𝑠𝑙𝑙𝑛𝑛(𝜋𝜋𝑝𝑝) 𝑐𝑐𝑑𝑑𝑠𝑠(𝜋𝜋𝑞𝑞) +

(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+22 )𝑒𝑒−(𝑝𝑝+12 )𝑊𝑊ℎ𝑙𝑙𝑡𝑡𝑡𝑡𝑎𝑎 𝑘𝑘𝑒𝑒𝑠𝑠𝑀𝑀 (
𝑝𝑝 + 𝑞𝑞

2
,
𝑝𝑝 + 𝑞𝑞 + 1

2
, 𝑝𝑝 + 1)𝛤𝛤(−𝑝𝑝 − 𝑞𝑞) 𝑐𝑐𝑑𝑑𝑠𝑠(𝜋𝜋𝑝𝑝) 𝑠𝑠𝑙𝑙𝑛𝑛(𝜋𝜋𝑞𝑞) +

(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝜋𝜋𝑝𝑝 + (1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝜋𝜋𝑞𝑞 + (1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝜋𝜋. ⎠

⎟
⎟
⎟
⎞

  

 
where 𝛷𝛷(𝑝𝑝, 𝑞𝑞) = (−1)𝑝𝑝+𝑞𝑞+1𝑞𝑞𝑝𝑝

𝑝𝑝!𝑞𝑞!(𝑝𝑝+𝑞𝑞+1)𝛤𝛤(−𝑝𝑝−𝑞𝑞) 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑝𝑝+𝜋𝜋𝑞𝑞)
. 

 
Rewriting and simplifying, we obtain: 

 

= ∑ ∑ 𝛷𝛷(𝑝𝑝, 𝑞𝑞)�
(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+22 )𝑒𝑒−(1+𝑝𝑝2 )𝑊𝑊ℎ𝑙𝑙𝑡𝑡𝑡𝑡𝑎𝑎 𝑘𝑘𝑒𝑒𝑠𝑠𝑀𝑀 (𝑝𝑝+𝑞𝑞

2
, 𝑝𝑝+𝑞𝑞+1

2
,𝑝𝑝 + 1)𝛤𝛤(−𝑝𝑝 − 𝑞𝑞) 𝑠𝑠𝑙𝑙𝑛𝑛(𝜋𝜋𝑝𝑝 + 𝜋𝜋𝑞𝑞)

+ (1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝜋𝜋(𝑝𝑝 + 𝑞𝑞 + 1)
�∞

𝑝𝑝=0
∞
𝑞𝑞=0   

 
Now, letting 𝑎𝑎 = 𝑝𝑝

2
+ 𝑞𝑞

2
, 𝑐𝑐 = 𝑝𝑝

2
+ 𝑞𝑞

2
+ 1

2
, and  𝑧𝑧 = 1 + 𝑝𝑝, we get: 

 
𝑊𝑊ℎ𝑙𝑙𝑡𝑡𝑡𝑡𝑎𝑎 𝑘𝑘𝑒𝑒𝑠𝑠𝑀𝑀 (𝑝𝑝

2
+ 𝑞𝑞

2
, 𝑝𝑝
2

+ 𝑞𝑞
2

+ 1
2

,𝑝𝑝 + 1) = 𝑒𝑒−(𝑝𝑝+12 )(1 + 𝑝𝑝)
𝑝𝑝+𝑞𝑞+2

2 ∑ 𝛤𝛤(𝑝𝑝+𝑞𝑞+2)(1+𝑝𝑝)𝑟𝑟

𝛤𝛤(𝑝𝑝+𝑞𝑞+𝑟𝑟+2)
∞
𝑟𝑟=0 . 

 
Next, we replace the result in the latter expression and multiply by 𝛷𝛷(𝑝𝑝, 𝑞𝑞). Finally, simplifying it further, 
we get the following series: 
 

= ��
(−1)𝑝𝑝+𝑞𝑞+1𝑞𝑞𝑝𝑝

𝑝𝑝! 𝑞𝑞!

∞

𝑝𝑝=0

∞

𝑞𝑞=0

�𝑒𝑒−(𝑝𝑝+1)𝛤𝛤(𝑝𝑝 + 𝑞𝑞 + 1)�
(1 + 𝑝𝑝)𝑟𝑟

𝛤𝛤(𝑝𝑝 + 𝑞𝑞 + 𝑠𝑠 + 2)
+

𝜋𝜋(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)

𝛤𝛤(−𝑝𝑝 − 𝑞𝑞) 𝑠𝑠𝑙𝑙𝑛𝑛(𝜋𝜋𝑝𝑝 + 𝜋𝜋𝑞𝑞)

∞

𝑟𝑟=0

� 

 
But, 
  
∑ (1+𝑝𝑝)𝑟𝑟

𝛤𝛤(𝑝𝑝+𝑞𝑞+𝑟𝑟+2)
∞
𝑟𝑟=0 = 𝑒𝑒1+𝑝𝑝(1+𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)(−𝛤𝛤(𝑝𝑝+𝑞𝑞+1,1+𝑝𝑝)+𝛤𝛤(𝑝𝑝+𝑞𝑞+1))

𝛤𝛤(𝑝𝑝+𝑞𝑞+1)
  (23)  

 
and 
 
𝛤𝛤(𝑝𝑝 + 𝑞𝑞 + 1)𝛤𝛤(−𝑝𝑝 − 𝑞𝑞) = −𝜋𝜋

𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑝𝑝+𝜋𝜋𝑞𝑞)
  (24) 

 
Hence, replacing (23) and (24) in the last expression, one finds that the integral of the gradient function 
𝐺𝐺3(𝑥𝑥), over the interval (1,1/𝑒𝑒) ⊂ [0,1] is the double series: 
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��
(−1)𝑝𝑝+𝑞𝑞+2𝑞𝑞𝑝𝑝(1 + 𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝛤𝛤(𝑝𝑝 + 𝑞𝑞 + 1, 1 + 𝑝𝑝)

𝑝𝑝!  𝑞𝑞!

∞

𝑝𝑝=0

∞

𝑞𝑞=0

 

 
So, we finally get to:  
 

∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥
1
𝑒𝑒
0 == ∑ ∑ (−1)𝑝𝑝+𝑞𝑞𝑞𝑞𝑝𝑝(1+𝑝𝑝)−(𝑝𝑝+𝑞𝑞+1)𝛤𝛤(𝑝𝑝+𝑞𝑞+1,1+𝑝𝑝)

𝑝𝑝!𝑞𝑞!
∞
𝑝𝑝=0

∞
𝑞𝑞=0         ⊲ 
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