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We reformulate the maximum availability location problem (MALP) with fewer variables and constraints. 
Our computational experiments demonstrate that the reformulated MALP solves much faster and 
provides improved solutions under certain conditions. 
 
INTRODUCTION 

 
This technical note presents a revised formulation of the novel maximum availability location 

problem (MALP) and documents its advantages. Hence, we focus on the important developments which 
preceded MALP. For a more detailed literature review, we refer the reader to ReVelle et al. (C. ReVelle, 
Eiselt, & Daskin, 2008) for a comprehensive review of location modeling, and to Brotcorne et al.’s 
(Brotcorne, Laporte, & Semet, 2003) review of recent developments in ambulance location problems.  

The two earliest models where the Set Covering Location Problem (SCLP) (Toregas, Swain, ReVelle, 
& Bergman, 1971), which minimized the total cost of ambulances needed to cover a region and the 
Maximum Covering Location Problem (MCLP) (Church & ReVelle, 1974) which maximized coverage 
given a set of ambulances. Both these models were deterministic in nature and did not account for the 
probability that the ambulances will not be available.  

One of the two models which did address the unavailability of ambulances was the Maximum 
Expected Coverage Location Problem (MEXCLP) (Daskin, 1983). By making assumptions that 
ambulances are busy with the same probability and operate independently, the MEXCLP maximizes the 
expected coverage given a set of ambulances. About the same time, ReVelle and Hogan (C. ReVelle & 
Hogan, 1989) addressed this issue by proposing MALP which maximized coverage while guaranteeing 
coverage with a certain reliability. In this technical note we reformulate MALP with a fewer numbers of 
constraints and variables and show that it solves faster and provides improved solutions. In section 2 we 
review MALP in detail and in section 3, we introduce r-MALP.  In section 4 we present computational 
statistics, and results from simulated data and historical data from Charlotte Mecklenburg.  Section 5 
contains the conclusions. 
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MAXIMUM AVAILABLE LOCATION PROBLEM 
 
ReVelle and Hogan (C. ReVelle & Hogan, 1989) formulate the Maximum Availability Location 

Problem (MALP I and MALP II) to maximize the population the servers can cover (within a target 
response time) with a reliability of 𝛼. Let, 
 
𝑛 = number of nodes in the system 
𝑚 = number of ambulances available 
ℎ𝑗 = demand at node 𝑗 
𝑡̅ = average service time 
𝑥𝑖 = �1 of servers positioned in node 𝑖

0 if not                                                
� 

𝑦𝑗𝑏 = �1 if 𝑏 servers cover node 𝑗
0 if not                                    

� 

𝑎𝑖𝑗 = �1 if node 𝑗 is covered by server at node 𝑖
0 if not                                                                

� 
 
Then the average busy probability of an ambulance can be estimated by 
 

𝜌 =
𝑡̅ ∑ ℎ𝑗𝑛

𝑗=1

24∑ 𝑥𝑖𝑛
𝑖=1

=
𝑡̅ ∑ ℎ𝑗𝑛

𝑗=1

24 𝑚
 (1)  

 
With this definition of busy fraction, a chance constraint on service availability can be written in 

order to determine the service requirements of the demand areas. Chance constraints formulated by 
Charnes and Cooper (1959) can be used. The chance constraint is 

 
1 − 𝜌∑ 𝑎𝑖𝑗𝑥𝑖𝑛

𝑖=1 ≥ 𝛼 (2)  
 
Where 𝛼 is the desired reliability in coverage. Therefore the number of servers needed to cover a 

node so that we can have 𝛼 reliable coverage is 
 

𝑏 = �
log (1 − 𝛼)

log𝑝 � (3)  

 
Therefore each demand area will require at least 𝑏 servers in order to attain the required level of 

coverage with 𝛼 reliability. The objective function in the MALP is to maximize the total demand covered 
by at least an α level of reliability 

 
Maximize 

�ℎ𝑗𝑦𝑗𝑏

𝑛

𝑗=1

 (4)  

Subject to 

�𝑎𝑖𝑗𝑥𝑖 ≥ �𝑦𝑗𝑘

𝑏

𝑘=1

        ∀𝑗
𝑛

𝑖=1

 (5)  

𝑦𝑗𝑘 ≤ 𝑦𝑗,𝑘−1                    ∀𝑗 (6)  

�𝑥𝑖 ≤ 𝑚
𝑛

𝑖=1

 (7)  

102     Journal of Applied Business and Economics Vol. 17(2) 2015



𝑥𝑖,𝑦𝑗𝑘𝜖{0,1}                    ∀𝑗  (8)  
 
The objective function (4) maximizes demand covered by 𝑏 servers which guarantees 𝛼 reliability. 

Constraint (5) counts the number of nodes covered by 𝑏 servers and constraint (6) ensures that a node is 
first covered once before it is covered twice and so on. Constraint (7) ensures that the total number 
ambulances are not greater than the number of ambulances available. 

 
REFORMULATED MAXIMUM AVAILABLE LOCATION PROBLEM (R-MALP) 

 
In r-MALP we modify the following variables from MALP. We change  
 

𝑦𝑗𝑏 = �1 if 𝑏 servers cover node 𝑗
0 if not                                    

� to 𝑦𝑗 = �1 if  node 𝑗 is covered at least b times
0 if not                                                        

�  
 
and redefine  
 
𝑥𝑖 = �1 of servers positioned in node 𝑖

0 if not                                                
� to 𝑥𝑖 = number of servers located at node i 

 
With these modifications MALP is reformulated to 
 
Maximize 

�ℎ𝑗𝑦𝑗

𝑛

𝑗=1

 (9)  

Subject to 

�𝑎𝑖𝑗𝑥𝑖 ≥ 𝑏𝑦𝑗         ∀𝑗
𝑛

𝑖=1

 (10)  

�𝑥𝑖 ≤ 𝑚
𝑛

𝑖=1

 (11)  

𝑦𝑗𝜖{0,1}                    ∀𝑗  (12)  
 

The objective function (9) still maximizes the demand locations covered by 𝑏 servers which 
guarantees 𝛼 reliability.  Constraint (10) ensures that node j is deemed covered (𝑦𝑗 = 1) only if it is 
within coverage distance of the required number of vehicles which is denoted by 𝑏.  By changing the 
definition of variables we have eliminated the need for constraint (6). Further by changing the right hand 
side value of constraint (10) we have eliminated the need for variables 𝑦𝑗𝑘 ,𝑘 = 1 𝑡𝑜 𝑏.   

These changes result in a more compact and robust model. In a problem size with 𝑏 servers and 𝑗 
demand nodes the MALP has  (𝑗𝑏 + 1) constraints and 𝑗(2 + 𝑏) variables while the r-MALP has (𝑗 + 1) 
constraints and (3𝑗) variables thus reducing the number of constraints and variables by 𝑗(𝑏 − 1).  Table 1 
below shows the difference between MALP and r-MALP for a problem size of 100 demand nodes and 
100 server nodes.  As can be seen from Table 1 as the number of vehicles needed to guarantee coverage 
with 𝛼  reliability (b) increases the difference between the number of variables and constraints used in the 
two models increases significantly. 
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TABLE 1 
COMPARISON BETWEEN MALP AND r-MALP FOR VARYING VALUES OF b 

 
𝑏 MALP r-MALP 

Variables Constraints Variables Constraints 
1 300 101 300 101 
2 400 201 300 101 
3 500 301 300 101 
4 600 401 300 101 
5 700 501 300 101 

 
 
This shows the robustness of the r-MALP model as it can solve for multiple levels of server 

availability without increasing the problem size. The usefulness of the r-MALP model in this regard is 
evident when solving problems where ambulance availability is limited.  If the number of ambulances 
available is large enough to saturate the region then the problem is trivial. However in a practical setting 
we typically deal with limited ambulance availability and thus have to evaluate a large number of 
potential solutions. The fact that the r-MALP is less constrained is an advantage since it will lead to faster 
solution times. In Table 2 we consider the impact of increasing demand nodes on the two formulations. 
As can be seen from Table 2 as the number of available vehicles increases the number of variables and 
constraints increase for MALP but for the reformulated r-MALP they remain constant. In instances where 
we have a predetermined level of reliability (𝑏 = 3) and wish to increase the number of demand nodes. 
The difference between the number of variables /constraints used in the MALP and the number of 
variables/constraints used in the r-MALP increases exponentially as the number of demand nodes is 
increased. 

One of the issues that arise when using spatial information in optimization models is the error caused 
by aggregation.  Emergency calls arising from a zone are aggregated into a single demand node. Francis 
et al. (Francis, Lowe, Rayco, & Tamir, 2009) explain that, using a larger number of demand nodes will 
decrease model error but will increase modeling and computing cost.  By using the r-MALP we are better 
able to decrease model error while keeping computing cost relatively low.  

 
TABLE 2 

COMPARISON BETWEEN MALP AND r-MALP FOR VARYING VALUES OF j 
 

𝑗 MALP r-MALP 
Variables Constraints Variables Constraints 

25 125 76 75 26 
50 250 151 150 51 
100 500 301 300 101 
200 1000 601 600 201 
400 2000 1201 900 401 

 
 
The ability of the r-MALP to provide a superior solution can be shown by the following example. 

Consider an area divided into 9 nodes(3𝑋3). An ambulance can cover demand originating from the zone 
it is located in and demand originating from the four adjacent zones. We set the minimum number of 
servers required to achieve the desired reliability at 2 and solve the problem of locating 2 servers so that 
coverage is maximized. An ambulance placed in the center zone covers 5 zones while an ambulance 
placed in any other zone will at most, cover 3 zones. Therefore the optimal solution would be to place 
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both available ambulances in the center and provide coverage with the desired reliability to 5 zones. The 
results given by both models are illustrated in Figure 1. 

The MALP model defines 𝑥𝑖 as a binary variable. As a result it allows placing of one or zero 
ambulances in any given zone. By changing variable 𝑥𝑖 from a binary to an integer variable the r-MALP 
allows the placing of multiple servers in a single zone. Thus the solution provides coverage to 5 zones by 
placing both servers in zone 5. The MALP solution can provide at best coverage to 2 zones by placing 
one server in in the center zone and the second server in any other zone. The difference between the 
optimal solution values given by the two models is magnified as the desired level of reliability is 
increased. 
 

FIGURE 1 
COMPARISON OF MALP AND r-MALP 

 
MALP Solution r-MALP Solution 

  
 
 
COMPUTATIONAL EXPERIMENTS 

 
In order to compare the original MALP and the revised model we first generated a region which is 

1024 sq miles in size and is divided in to 256 zones. Each zone is a square, 4 sq miles in size (2 miles by 
2 miles). We randomly generated uniformly distributed call (demand) rates for each of the zones. Ten 
different sets of data were generated. We applied both models to the simulated data in order to compare 
the performance of each at different levels of server availability and reliability. The experiments, were 
conducted on a Dell PC Pentium IV 3.4 MHz with 2 GB RAM. The linear programming solver used was 
LINDO. 

The results shown in Figure 2 indicate that the time to solve for the original MALP increases 
exponentially as the number of available servers decrease. The revised MALP utilizes the same number of 
variables and constraints for all levels of b therefore the average time to solve remains consistent. As 
mentioned above if a large number of ambulances are available then achieving blanket coverage becomes 
trivial. However when the number of available ambulances is limited then the problem becomes 
increasingly complex. Therefore for problems with a larger number of zones and limited resources using 
the revised MALP would result in a significant saving of time without any loss of optimality.  
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FIGURE 2 
IMPACT OF REDUCING THE NUMBER OF AVAILABLE  

AMBULANCES ON SOLUTION TIME 
 

 
 
We now examine the improvement in objective function values that the revised MALP provides. 

Figure 3 indicates that as the number of ambulances available reduces we are able to achieve an 
increasingly higher level of coverage using r-MALP when compared the coverage obtained using MALP. 
The r-MALP model allows us to provide enhanced coverage to high demand areas by placing multiple 
ambulances in one zone. As a result when resources are limited it provides a more optimal allocation. 
 

FIGURE 3 
IMPACT OF REDUCING THE NUMBER OF AVAILABLE AMBULANCES ON THE 

OBJECTIVE FUNCTION VALUE 
 

 
 
These results are more pronounced when we examine the effect of an increasing level of reliability 

(α) as shown in figure 4 and 5. Increasing the desired reliability will increase the minimum number of 
ambulances required (b) to cover a zone. As shown above the variables /constraints used in the r-MALP 
remain constant as b increases. As a result the r-MALP displays consistent solution times across a range 
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of values for α. It is therefore much better equipped to handle a large problem space which requires a high 
level of reliability. Figure 5 demonstrates the superiority of the r-MALP solution when α increases. Using 
the r-MALP we are better equipped to avoid sub-optimal solutions in cases of limited ambulance 
availability and high reliability requirements.  

 
FIGURE 4 

IMPACT OF INCREASING α ON SOLUTION TIME 
 

 
 

FIGURE 5 
IMPACT OF INCREASING α ON THE OBJECTIVE FUNCTION VALUE 

 

 
 
RESULTS FOR MECKLENBURG COUNTY DATA 

 
We applied both models to Mecklenburg County (essentially, Charlotte and environs), North 

Carolina, a region of approximately 540 square miles with a population of 801,137 in 2004, which has 
grown to 919,628 as of 2010. In 2004, the county received a total of 77,292 calls for assistance, 62,092 of 
which were classified as medical emergencies. We superimposed a 2 x 2 sq. mile grid in order to 
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aggregate the call data, resulting in 168 demand nodes. A key assumption was that ambulances could be 
located at any node with the exception of those on the outer edges of the grid. We ran both models on call 
data for each day of the week. We varied the parameters for reliability and number of ambulances 
available to compare the performance of each model.  

The revised MALP outperformed the MALP for every problem set instance in our analysis. The 
difference in time taken to solve was more pronounced when the complexity of the problem increases. 
For example when the number of available ambulances is restricted to 20 and a reliability of 80% is 
desired the r-MALP solves to optimality in an average of 15 seconds while the MALP does not reach an 
optimal solution after 4 hours in 6 out of the 7 problem instances. When the problem is more constrained 
(reliability is increased to 90%) the r-MALP provides an optimal solution in less than 3.5 minutes in 5 out 
of the 7 problem instances while the MALP solution is suboptimal after 4 hours in all 7 problem 
instances. 

The ability of the r-MALP to provide a solution with superior coverage is illustrated in figures 6 and 
7. Figure 6 shows the difference in objective function values for r-MALP and MALP when utilizing 20, 
25 and 30 ambulances and a reliability of 80% is desired. The difference in optimal solutions is higher 
when the number of available ambulance is restricted. For all 3 levels of available ambulances the r-
MALP provides at least as good a solution as the MALP. The impact of r-MALP is pronounced when the 
system is busy (either smaller number of servers or when higher reliability is required). Figure 7 gives the 
results a reliability level of 90%. Requiring higher levels of reliability with the same set of ambulances 
increases how busy the ambulances are going to be. 
 

FIGURE 6  
DIFFERENCE IN COVERAGE BETWEEN r-MALP AND MALP FOR α=80% 

 
 
 
As expected the difference in optimal solutions is more pronounced as α is increased to 90%. When 

the number of servers increases to 30 and the system has more servers than necessary the difference 
between the two models drop. The r-MALP solution provides coverage to as much as 64 more calls when 
compared to the MALP solution. On average the r-MALP covers 26.5 more calls when the number of 
ambulances available is 20 and 25. 
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FIGURE 7  
DIFFERENCE IN COVERAGE BETWEEN r-MALP AND MALP FOR α=90% 

 
 
 
CONCLUSIONS 

 
The contribution of this technical note is twofold. First, the reformulation of MALP allows the 

problem to be solved with a fewer number of variables and constraints leading to considerable savings in 
solution time. The efficiency of the reformulated MALP when compared to the original model is 
pronounced when it is applied to complex problems (problems with a large number of zones requiring a 
high level of reliability). Second the reformulated model provides a superior solution. As a result a larger 
number of calls are covered with the desired level of reliability.  We have shown the improvements in 
efficiency, solution time and objective function value by applying both models to simulated and real data 
from Charlotte Mecklenburg. This is an important development  since the MALP has subsequently been 
extended in models such as Marianov and ReVelle’s (Marianov & ReVelle, 1996) Q-MALP. Here the 
minimum number of servers required is calculated by “treating the arrival and service times as a queuing 
system. The Q-MALP was further extended by Ghani (Ghani, 2012) where two types of servers 
(Advanced Life Support and Basic Life Support) are considered. Rajagopalan, Saydam et al. 
(Rajagopalan, Saydam, Setzler, & Sharer, 2012) formulated the Dynamic Available Coverage Location 
Model (DACL) where the objective function is to minimize the number of servers required to ensure a 
predetermined level of coverage with reliability α. In both the MALP extensions and the DACL the 
revisions to the MALP can be used to reduce solution times and improve objective function values. 
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