Idiosyncratic Risk Pricing in Canada

Shishir Singh
SUNY Empire State College

This paper confirms the relationship between idiosyncratic risk and excess stock returns for Canadian equities. The relationship between returns and idiosyncratic risk is examined using Fama-MacBeth two-step methodology with a modified Carhart four-factor (five-beta) model. The Fama-MacBeth tests are conducted with and without the presence of control variables for liquidity (proxied by amortized spread or the illiquidity measure of Amihud) and firm-specific information embedded in stock prices (proxied by synchronicity and the zero-return metric). The conditional relation between returns and idiosyncratic risk for Canadian stocks is robust and significant. Given the model dependencies and metrics, the paper posits this to a higher competitive environment, investor under-diversification, and lower market power faced by Canadian firms as compared to US firms.

INTRODUCTION

A basic tenet of modern portfolio theory has been an assumption that, only systematic risk is priced in stock returns. However, Campbell et al. (2001) found that firm-level, idiosyncratic volatilities (IVs) have increased. Since that study there has been a debate on whether this effect really exists, the causal determinants for the long-term IV increase, and the nature of its pricing relationship with stock returns.

The first objective of this paper is to examine if IV is priced in the Canadian stock market for individual stocks using inferential sturdiness and after controlling for factors that are believed to affect returns and including firm-specific private information flow (Taylor 2008). The second objective is to examine the relation between contemporaneous returns for individual stocks and lagged IV values, which provides a weak test of the predictive power of idiosyncratic risk.

IV has been related to a number of potential factors in the literature, including an increase in publicly traded stocks on the NASDAQ, an increase in institutional ownership and expected earnings growth (Xu and Malkiel, 2003), and an increase in smaller, riskier firms being listed through initial public offerings (Brown and Kapadia (2007). More recently Jiang et al. (2009) have attributed higher stock volatility to investor under-reaction to news due to selective corporate disclosure of negative news. An increase in momentum profits from under-reaction to firm-specific information has also been documented recently by Arena et al. (2008). On the other hand, Gasper and Massa (2006), and subsequently Irvine and Pontiff (2009), attribute an increasingly competitive environment faced by firms and consequent higher uncertainty, and lower product market power as causal factors for the rise in idiosyncratic volatility.

Recent research findings by Bekaert et al. (2010) reveal no upward trends in idiosyncratic volatilities except for short-term switching into a higher-variance regime. However, whether or not IV is priced and predicts future stock returns has been the subject of active research. Recent empirical findings have
produced mixed results (Guo and Whitelaw, 2006) in that some of the estimated relationships between returns and various volatility measures are not robust.

Guo and Savickas (2006b) and Ang et al. (2009) have examined this issue for G7 countries (including Canada). However, their findings suffer from survivorship bias, based on limited number of existing Canadian stocks in the Datastream database. Findings by Ang et al. (2009) were weakly significant for Canada. For a more robust study, this paper used daily and monthly data of all stocks listed in the CFMRC database over the 1975-2003 period. Furthermore, the study examines various sub-samples thereof, including firms cross-listed on both the TSX and U.S. markets, non-cross listed (local) firms, big and small firms, and firms in the IT sector.

This paper makes two important contributions to the literature. The first contribution is the use of asymmetric idiosyncratic risk to confirm that there is a significant relationship between monthly excess stock returns and asymmetric idiosyncratic risk for individual stocks in Canada. This study focused on Canadian stocks, since Canada’s real economy is integrated with the USA through the largest free-trade, as well as financially integrated under NAFTA, with similar opening and closing hours of TSE and NYSE, and cross-listing of Canadian stocks on US stock exchanges. On account of this integration, preliminary hypothesis would suggest a similar firm-specific risk-returns relationship. Yet, this study finds a dissimilar much stronger relationship. The relationship between monthly returns and asymmetric idiosyncratic risk is strong using IVs based within a 60-month moving window. Not surprisingly, the relationship is even stronger using more recent values of idiosyncratic risk (i.e., values calculated using days-within-the-month versus a 60-month moving window). The explanatory power of asymmetric idiosyncratic risk is still high for the returns of individual stocks when the IV value is lagged one month to correspond with the information available to a typical (uninformed) investor. This result provides evidence for the predictive power of idiosyncratic risk. This study demonstrates that this relationship is not subsumed by inclusion of various firm-specific control variables such as (il)liquidity or informational transparency, which proxy for private information flow.

The second contribution is the finding that the pricing of idiosyncratic volatility is not a small firm phenomenon (as argued for the U.S. by Brown and Ferreira, 2004). Furthermore, the premium for bearing illiquidity risk among small firms is positive and significant for most samples.

The remainder of the paper is structured as follows. Section briefly reviews the relevant literature. The samples and the data are discussed in section three. Sections four and five report on whether or not IVs are priced and whether or not IVs have any power to “predict” future stock returns in the Canadian market. Given the mixed results reported in the literature, two methodologies are employed for a robust examination of the risk-return relation. Section six concludes the paper.

IDIOSYNCRATIC VOLATILITY AND EXPECTED RETURNS

Idiosyncratic variance or its square root, volatility or risk (henceforth IV) represents firm-specific information (Fu, 2005), and is captured by the innovations not explained by expected returns (Spiegel and Wang, 2005). Since expected returns and expected IVs are not observable, IV measures are dependent on the model used to price systematic risk(s). Various methodologies have been used to estimate (un)conditional IVs in the literature (Xu and Malkiel, 2003).

Guo and Savickas (2006c) explain that the debate on the relationship between returns and IVs, initiated by the stock return predictability findings of Fama (1991) continues. Under the intertemporal CAPM of Merton (1973) with time-varying expected returns, Campbell (1993) argues that stock returns are determined not only by their covariances with market returns but also with their covariances with variables that forecast market returns (such as IVs).

Empirical studies have produced mixed results (e.g., Guo and Whitelaw, 2006) with some such as Bali et al. (2005) finding that the IV measures are not robust. The reported relations for various country markets run from significantly positive (e.g., Lintner, 1965; Lehmann, 1986; French, Schwert, and Stambaugh, 1987; Campbell and Hentschel, 1992; Drew and Veeraraghaven, 2002; Goyal and Santa-Clara, 2003; Drew, Naughton and Veeraghavan, 2003; and Jiang and Lee, 2006) to insignificantly
positive (e.g., Tinic and West, 1986; Xu and Malkiel, 2003; Bali et al., 2005) to negative (e.g., Breen, Glosten and Jagannathan, 1989; Longstaff, 1989; Ang et al., 2006) to significantly negative (e.g., Campbell, 1987). Xu and Malkiel (2003) find that IV is positively related to stock returns after controlling for size, book-to-market ratios and liquidity and that stock fundamentals partially explain increases in aggregate IVs. However, after controlling for numerous factors (business cycle fluctuations, liquidity, momentum, size, value, variance in analyst forecasts and volume), Ang et al. (2009) reject the notion that stocks with higher IVs may also have higher aggregate volatility and lower returns.

This mixed evidence suggests the need for the use of a multi-factor model (Scruggs, 1998), due to an omitted variable bias. Although some researchers argue that IV estimates are unable to capture time variation because of measurement errors (Fu, 2005), others (e.g., Guo and Savickas, 2003) argue that expected stock returns have risk and liquidity components that may be correlated negatively, leading to mixed results without controls. Bali et al. (2005) argue that the positive relationship between market returns and IVs is driven by trading on Nasdaq and the liquidity premium. Yan and Zhang (2003) find that the predictive power of IV is sensitive to its measure and is partly driven by the liquidity premium. Guo and Savickas (2003) conjecture that investors demand a risk premium in addition to a liquidity premium to compensate them for poorly diversified portfolios (e.g., Goetzmann and Kumar, 2003). Thus this paper adjusts for (il)liquidity using two alternative measures described below (LIQ and LIQ_{AMM}).

Early researchers found that market volatility contributed little to the prediction of returns (French, Schwert and Stambaugh, 1987). However, recent research by Guo and Savickas (2006a) confirms that market volatility in conjunction with IV significantly predicts a negative relationship with expected returns. Gasper and Massa (2006) posit that increased competitive conditions and lower market power result in higher uncertainty regarding firm’s earnings and higher idiosyncratic volatility. Arena et al. (2008), attribute investor under-reaction to firm-specific information, and consequent increasing momentum to a rise in IV. Taylor (2008) has argued that incorporating proxies for private information flow, despite the positive cross-sectional association, improves the predictive relationship. Therefore, this paper uses two firm-specific metrics: the firm-specific synchronicity (SYNC) of Morck et al. (2000), and a zero return trade metric (VROM) that reflects stock informational transparency.

DATA AND METHODOLOGY

Data

The data on Canadian stocks listed on the Toronto Stock Exchange (TSX) is extracted from the CFMRC historical database. The sample for our study is from 1975-2003 and consists of 3,396 stocks classified as a group of All Firms. These are also grouped using SIC code for industry classification. This sample is subdivided into those firms that are (not) cross-listed in U.S. markets based on various issues of the TSE Monthly Review. This results in samples of 3,072 that are not cross-listed (TSX only – local control group) and 324 that are cross-listed (treatment group) in both TSX and U.S. markets (NYSE, AMEX or NASDAQ). The all-firm sample is also subdivided by the median market capitalization each year into a sample of big and small firms, since Brown and Ferriera (2004) argue that idiosyncratic volatility is only priced for small firms. The 225 Canadian firms in the information technology, telecommunication, and consultancy sector (IT) are also examined to facilitate comparison against the findings of Domanski (2003) for this sector in the U.S. The six samples or investment opportunity (IO) sets then include, all, big, small, domestic-only listed, cross-listed in the U.S., and IT firms.

Daily and monthly stock returns, closing prices, bids and asks, traded share volume and numbers of shares outstanding over the period from 1975-2003 are extracted from the CFMRC. The 30-day Canadian and U.S. T-Bill rates obtained from the Bank of Canada and the Federal Reserve Bank of St. Louis, respectively, are used as proxies for the respective risk-free rates to compute excess stock returns.

Monthly and daily time-series of returns are constructed for four factors for the Canadian market using a variety of sources, including the Financial Post database. These four factors are the market factor (MKT = excess market return), the size factor (SMB = Small minus Big), the growth factor (HML = High minus Low), and momentum factor (WML = Winner minus Loser = Up minus Down). The return series
are subsequently used in applications of the Fama and French (1995) and Carhart (1997) models (i.e., original FF 3-factors plus momentum).

Measuring Idiosyncratic Volatility

The idiosyncratic volatility for firm \(i \) in sample \(s \) for month \(t \), or \(\sigma^2\left(\varepsilon_{i,s,t}^{3FF}\right) \), for the three-factor market model of Fama and French (3FF) is obtained in two steps. First, the following 3FF model is estimated for each firm \(i \) for each month \(t \) using all the days within each month (i.e., \(d_i = 1, \ldots, D_t \)):

\[
 r_{i,s,d_i} = \alpha_{i,s} + \beta_{i,s,1} \cdot MKT_{d_i} + \beta_{i,s,2} \cdot SMB_{d_i} + \beta_{i,s,3} \cdot HML_{d_i} + \varepsilon_{i,s,d_i}^{3FF}
\]

where \(r_{i,s,d_i} \) is the return for firm \(i \) in sample \(s \) for day \(d \) in month \(t \); MKT\(_{d_i}\), SMB\(_{d_i}\) and HML\(_{d_i}\) are calculated as described earlier; \(\alpha \) and \(\beta \) are parameters estimated; and \(\varepsilon_{i,s,d_i}^{3FF} \) is the error term from the 3FF model for firm \(i \) in sample \(s \) for day \(d \) in month \(t \), which is assumed to have the standard i.i.d. properties. Then the idiosyncratic volatility for firm \(i \) in sample \(s \) for month \(t \), or \(\sigma^2\left(\varepsilon_{i,s,t}^{3FF}\right) \), is obtained from:

\[
\sigma^2\left(\varepsilon_{i,s,t}^{3FF}\right) = \frac{1}{D_t} \sum_{d_i=1}^{D_t} \left(\varepsilon_{i,s,d_i}^{3FF}\right)^2
\]

The idiosyncratic volatility for firm \(i \) in sample \(s \) for month \(t \), or \(\sigma^2\left(\varepsilon_{i,s,t}^{3FF}\right) \), for the three-factor market model of Fama and French (3FF) combined with the model (GSC) of Goyal and Santa-Clara (2003) is also obtained in two steps, where the second step, after incorporating the autocorrelation in daily returns identified by French, Schwert and Stambaugh (1987), becomes:

\[
\sigma^2_{adj}\left(\varepsilon_{i,s,t}^{3FF}\right) = \frac{1}{D_t} \sum_{d_i=1}^{D_t} \left(\varepsilon_{i,s,d_i}^{3FF}\right)^2 + 2 \sum_{d_{i-1}=1}^{D_t-1} \left(\varepsilon_{i,s,d_i}^{3FF}\right)\left(\varepsilon_{i,s,d_i-1}^{3FF}\right)
\]

where all the terms are as defined earlier.

Two-Step Regression Estimation of Idiosyncratic Volatility

Testing if IV is priced for Canadian stocks is determined using the two-step regression approach of Fama and MacBeth (1973), which has also been used by Spiegel and Wang (2005) and Fu (2005) for US stocks. In the first step, the time series of monthly IVs are estimated along with estimation of the time series of each of the five betas of the 4-factor Carhart (1997) model that is modified to include up- and down-market factors. The IV for month \(t \) is based on the standard deviations of the innovations from a conditional 4-factor Carhart model using a rolling window of 60 months ending with month \(t \) or \(t-1 \), or by using all of the trading days within month \(t \) or \(t-1 \).

The second step involves two robustness estimation procedures. In the first procedure, a series of realized excess returns are regressed cross-sectionally against the time series of the five betas, the IVs and various control variables for (il)liquidity (amortized or Amihud measures) and firm-specific information (synchronicity and zero-return metric). In the second estimation procedure, risk-adjusted returns are regressed against the time series of the IVs and the same three control variables. The use of risk-adjusted (excess) returns for individual securities avoids the measurement error problem that occurs when using estimated betas as independent variables (Brennan et al, 1998) without diversifying away the potential pricing information implicit in IVs that occurs with the use of the common portfolio approach for dealing with measurement error. The risk-adjusted returns for each firm are calculated by subtracting the product of each of the five estimated factor coefficients from step 1 times its associated factor realization from the realized excess return for each time period \(t \). For both second-step estimation procedures, the resulting
time-series of parameter estimates for the IVs and the three control variables are then tested for significance, as in the original Fama-MacBeth (1973) procedure. Robust standard errors are used in the regression-based tests for testing the time-series of coefficient estimates when structural breaks in raw and risk-adjusted returns for the various IO sets are accounted for.

EMPIRICAL ASSET PRICING TESTS

In the first step, the 4-factor FF (Carhart) model that is modified to incorporate the two market beta approach examined by Pettengill et al. (1995), among others, is run for each month t. He and Kryzanowski (2006) find that a model with conditional (up and down) market betas provides a better description of the pricing relationship in Canadian markets. The specific model is given by:

$$ r^*_i = \alpha + \beta_{1,i}^{MKT} \delta R^*_m + \beta_{1,i}^{MKT} (1-\delta)R^*_m + \beta_{1,i} SMB + \beta_{1,i} HML + \beta_{1,i} WML + \epsilon_{i,t}^{FF} \quad (4) $$

where r^*_i is the excess return on security i over the risk-free rate for period t (i.e., $R_i,t - R_{f,t}$); R^*_m is the excess market return over the risk-free rate for period t; δ is a dummy variable that is equal to 1 if $(R_{m,t} - R_{f,t}) > 0$ & is equal to 0 otherwise; and all the other terms are as defined earlier. Subsequently, we refer to δR^*_m and $(1-\delta)R^*_m$ as MKT^*_i and MKT^-_i or as up- and down-market excess returns, respectively. To reduce the impact of infrequent trading, a stock is considered in month t if it has a minimum of either 45 months over the 60-month rolling window for which monthly returns and non-zero trading volumes are reported in CFMRC or 15 days in the month t or $t-1$ for which daily returns and non-zero trading volumes are reported in CFMRC (the latter is as in Fu, 2005).

In the second step, the following cross-sectional relationship is estimated by cross-sectional regressions for each month t:

$$ r^*_t = \alpha + \lambda_{1,t} \delta \hat{\beta}_{1,t}^{MKT} + \lambda_{2,t} (1-\delta) \hat{\beta}_{1,t}^{MKT} + \lambda_{3,t} \hat{\beta}_{1,t}^{SMB} + \lambda_{4,t} \hat{\beta}_{1,t}^{HML} + \lambda_{5,t} \hat{\beta}_{1,t}^{WML} + \phi IV_t + \lambda_6 \hat{\beta}_{1,t}^{LIQ} + \lambda_7 \hat{\beta}_{1,t}^{SYNC} + \lambda_8 \hat{\beta}_{1,t}^{VROM} + \xi_{t} \quad (5) $$

where the betas are the respective estimates from the first-step regressions; δ, SMB, HML and WML are as described earlier; ϕ is a dummy variable that is equal to 1 if $(R_{i,t} - R_{f,t}) > 0$ & is equal to 0 otherwise; and IV is the standard deviation of the residuals from regression (4) (specifically, $\epsilon_{i,t}^{FF}$ when (4) is estimated using monthly returns and by $\epsilon_{i,t}^{FF}$ multiplied by the number of trading days in the month when (4) is estimated using daily returns). IV is signed in a similar fashion to MKT to allow for an asymmetric effect of idiosyncratic risk on stock returns, so we subsequently refer to ϕIV^*_t and $(1-\phi)IV^-_t$ as IV^*_t and IV^-_t or as idiosyncratic risk for up- and down-stock excess returns, respectively.

LIQ is initially proxied by the amortized spread measure of Chalmers and Kadlec (1998) or LIQ^{4S}. The amortized spread measure is obtained by dividing the product of the absolute difference between the trade and mid-spread prices and the traded volume by the product of the trade price times the number of shares outstanding. (The daily closing price is a proxy for the execution price.)

$SYNC$ or synchronicity is the extent to which stock prices move together (Morck et al. 2000), and signifies the magnitude of firm-specific information incorporated into stock prices (Asbaugh-Skaife et al. 2006). Although different measures exist (Jin and Myers, 2006), the most popular is R^2. As in Morck et al. (2000), the logistic transformation $\gamma_j = \ln \left[\frac{R_{j}^2}{(1-R_{j}^2)} \right]$ is used, since R^2 is bounded within the
interval [0, 1]. The R_j^2 for each stock j is obtained from regression (4) using either moving monthly windows of 60 months or the days-within-each-month.

Higher values of R_j^2 imply an increase in co-movement of the stock with the market, and thus an increase in synchronicity (Durnev et al. 2003). Also, higher R_j^2 may imply a decline in firm-specific variation or noise (Jin and Myers, 2006), leading to lower idiosyncratic volatility because firm-specific information is already embedded in stock prices (Roll, 1988). However, some inconsistencies occur with synchronicity as Asbaugh-Skaife, Gassen and Lafond (2006) find that non-fundamental factors influence stock price synchronicity but the variation in firm-specific information flows or fundamentals is not consistently captured by R_j^2. Thus, the expected coefficient for $SYNC$ is indeterminate if the findings of Asbaugh-Skaife, Gassen and Lafond (2006) apply to the Canadian market.

$VROM$ is a zero-trade, zero-return measure. Asbaugh-Skaife et al. (2006) suggest that a zero-return&trade metric is a better measure of firm-specific information embedded in stock prices than R^2. Support for $VROM$ is based on Lesmond et al. (1999), who argue that no information-based trades will occur as long as the transaction costs of trading exceed the value of the information signal. Asbaugh-Skaife et al. (2006) propose that the smaller the proportion of zero returns in a given period, the greater the firm-specific information impounded in stock prices. The monthly measure of the zero-return&trade metric used herein is the natural log of the percentage of nonzero-trade&return days in a month. Thus, the expected coefficient for $VROM$ is positive.

EMPIRICAL RESULTS

Results from 60-Month Rolling Windows

A series of cross-sectional regressions (5) for each month t based on the contemporaneous betas and IVs estimated from regression (4) with and without contemporaneous estimates for LIQ^{45}, $SYNCH$ and $VROM$ are run for each of the six samples. Based on the regression results reported in Table 1, the average explanatory power of the model is very high with a range of 45% to 57% for the various samples. (Median R^2 values are not materially different for the tests reported in the following section.) The intercept is negative and very significant in the absence of the three control variables, and remains significant at the 0.05 level with the addition of the three control variables for only the TSX-only listed sample. This is in contrast to the positive and significant values reported for tests of the CAPM. While the down market betas are not priced, the up market betas are significantly priced for the full sample and the TSX-only listed and small firm samples. The average loadings on the SMB, HML and WML factor risks are not significantly different from zero. Most interestingly, the average loadings on the asymmetric IV factor risks are without exception very significant and with their expected signs, although their coefficient estimates lose some significance with the addition of the three control variables for some samples. The average coefficient estimate for positively signed IVs is always significantly higher in absolute value than its negatively signed counterpart. These results are most surprising given that the Fama-MacBeth estimation procedure implicitly assumes that the estimates from the past 60 months of data are good proxies for the conditional beta and conditional idiosyncratic risk in the current month, which Fu (2005) argues is not the case for IVs. The coefficient estimates for the various control variables are generally insignificant, except for liquidity for four of the six samples.

To determine whether the relationship between returns and IVs is robust to the use of IVs known at the beginning of each step 2 estimation period, the set of cross-sectional regressions are rerun using asymmetric IVs lagged one month. These results are presented in Table 2. As expected, the average explanatory power of the model is weakened, but only marginally for the various samples. As for the results based on contemporaneous IVs, only the up betas are significantly priced for some of the samples. The average loadings on the SMB, HML and WML factor risks are generally not significantly different from zero. The coefficient estimates for the asymmetric IV factor risks continue without exception to be
very significant and with the expected signs. The average coefficient estimates for positively signed IVs continue to be always significantly higher in absolute value than their negatively signed counterparts. Unlike the results above for the use of contemporaneous IV estimates, more of the average coefficient estimates for the three control variables are now significant. LIQ, SYNC and VROM are significant (with their expected signs) for the samples of all firms, and LIQ and VROM are significant for TSX-only listed, big and small firms. Thus, even if one makes the strong assumption that the best predictor of next period’s signed IVs are the current period’s estimates (i.e., that both follow a random walk), the initial evidence finds that both signed IVs are priced in the Canadian market.

Results from the Days-within-the-Month Rolling Windows

In order to compare our IV findings with those by Ang et al. (2006) for the U.S., the methods implemented in the previous section are repeated with daily data. The betas and signed IVs for the second-step regressions are estimated in the first step for a conditional 4-factor (i.e., 5-beta) Carhart model using a rolling window of all of the trading days within month t or t-1 (see regression 4). Then a series of cross-sectional regressions (5) use a rolling window of all of the trading days within month t, with and without contemporaneous (month t) estimates for LIQ, SYNCH and VROM. (A cross-sectional regression is run for month t only if at least 30 observations are available for that month. This only affected the IT sample, and reduced the number of cross-sectional regressions from 288 to 106.)

Based on the regression results reported in Table 3, the average explanatory power of the model increases and is very high with a range of 59% to 67% for the various samples. Not unexpectedly, these average R-squared values exceed their counterparts for the models estimated using contemporaneous IVs based on a 60-month moving window. The intercept is negative and very significant even in the presence of the three control variables, except in the IT sample. The risk premia on the up market betas are positive as expected for the full sample, the TSX-only listed sample, the cross-listed sample and big firm sample, but only in the absence of the control variables for the first three of these samples. With a few exceptions, the average loadings on the down market, SMB and HML factor risks are not significantly different from zero. Except for the IT sample, the average loadings on the momentum factor WML are positive and significant.

The average loadings on the asymmetric IV factor risks are without exception very significant and with the expected signs, although they lose some significance with the addition of the three control variables. The average coefficient estimate for the positively signed IVs is always significantly higher in absolute value than its negatively signed counterpart. The coefficient estimates for all three control variables are positive and highly significant for all but the IT sample.

To examine lagged relationships, for each month t betas and IVs are again estimated from regression (4). A series of cross-sectional regressions (5) use a rolling window of all of the trading days within month t-1, with and without contemporaneous (month t) estimates for LIQ, SYNCH and VROM, are then run. Based on the regression results reported in Table 4, the explanatory powers of the relationships decline somewhat with the use of lagged IVs based on trading-days-within-the-month, but remain high in the range of 0.48 to 0.57. This still exceeds the corresponding values based on lagged IVs from a trailing 60-month estimation window. The coefficient estimates for the IV factors remain highly significant, and the average coefficient estimates for the positively signed IVs remain significantly higher in absolute value than their negatively signed counterparts.

Using an Alternative Liquidity Measure

Robustness to our initial choice of LIQ measure is tested to add strength to our results. Specifically, we examine whether the relationship of returns to IV is robust to the approximate price impact measure of Amihud (2002) or \(LIQ_{AM} \), calculated as the absolute market return to traded dollar share volume over a monthly frequency. If greater illiquidity is priced, then the expected coefficient for \(LIQ_{AM} \) is positive.

Each of the tests conducted using the amortized spread as LIQ is repeated using the Amihud measure of (il)liquidity \(LIQ_{AM} \). Tests on both moving windows of 60 months and days-within-the-month are
conducted. The dependent variable is contemporaneous excess returns and the independent variables are
the five estimated betas, LIQ^{AMT}, $SYNC$, $VROM$ and either contemporaneous or lagged asymmetric IVs.
Table 5 shows the results for the days-within-the-month sample. (Results for the moving window of 60
months sample are not shown to conserve space, but the table is available from the authors.)

Although the average explanatory power of the model remains very high in all cases, it is generally
lower (marginally) when the Amihud measure is used instead of amortized spread to measure (il)liquidity.
Otherwise, the results are qualitatively similar in terms of factor pricing. More specifically, the two signed
IV factors continue to be highly significant with their correct signs for all samples.

Controlling for Measurement Error

Brennan et al (1998) recommend that risk-adjusted excess returns be used instead of raw excess
returns as the dependent variable in the cross-sectional regression (5). They suggest the use of risk-
adjusted returns for individual stocks to avoid the measurement problem that occurs when first-step beta
estimates are used as independent variables in the second-step cross-sectional regressions in the Fama-
MacBeth procedure. This avoids the use of the portfolio approach to minimize measurement error, which
tends to average-out the importance of firm-specific characteristics (e.g., residual variance) through the
aggregation or portfolio building process.

The risk-adjusted excess returns for firm i for period t, or ar^*_it, are given by:

$$ar^*_it = r^*_it - R^*_{f,t} - (\hat{\beta}^\text{MKT}_{i,t} \delta R^*_{m,t} + \hat{\beta}^\text{III}_{i,t} (1-\delta)R^*_{m,t} + \hat{\beta}^\text{SMB}_{i,t} \text{SMB}^*_t + \hat{\beta}^\text{HML}_{i,t} \text{HML}^*_t + \hat{\beta}^\text{WML}_{i,t} \text{WML}^*_t)$$

(6)

where all the terms are as previously defined, and the betas are estimated using the first-step Fama-French
regressions (4). The following second-step Fama-MacBeth relationship is now estimated by a series of
cross-sectional regressions given by (7) instead of (5) for each month t:

$$ar^*_it = \alpha + \lambda_1 IV^*_t + \lambda_2 (1 - \phi) IV^*_t + \lambda_3 LIQ^*_t + \lambda_4 SYNC^*_t + \lambda_5 VROM^*_t + \nu_{i,t}$$

(7)

where all the terms are as previously defined.

The time-series averages of the second-step cross-sectional regression results where the dependent
variable is contemporaneous risk-adjusted excess returns. The independent variables are liquidity
(alternatively either the amortized spread LIQ or the Amihud measure, LIQ^{AMT}), $SYNC$, $VROM$ and either
contemporaneous or lagged signed IVs. Moving windows of 60 months or days-within-the-month are
used, and the results for the latter are reported in Table 6. (Results for the moving window of 60 months
sample are not shown to conserve space, but the table is available from the authors.)

Accounting for measurement error in the first-step beta estimates reduces the significance of the two
IV variables, but their average estimated coefficients retain their expected signs and remain highly
significant in all cases. Thus, the importance of asymmetric idiosyncratic risk for the pricing of individual
securities is robust to not only the choice of metric for measuring (il)liquidity but also to accounting for
measurement error in the coefficient estimates from the first-step regressions in the Fama-MacBeth
empirical procedure.

CONCLUSION

This paper examines the pricing relationship of idiosyncratic volatility (IV) of Canadian stocks using
variants of the Fama-MacBeth methodology. It uses the Fama-French (FF) model as extended by Carhart
to find IV estimates. Using a risk-adjusted approach to overcome measurement errors, the paper confirms
that, there is a significant and robust relationship between stock returns and asymmetric idiosyncratic
volatility.
Unlike the findings for the U.S. (Domanski, 2003, Ang et al., 2009), this paper finds that significant risk premia for idiosyncratic volatilities are not confined to small firms in Canada. In contrast to the findings by Ang et al. (2009) on G7 countries that revealed a weak, statistically negative relationship of returns in Canada to contemporaneous and lagged IV, this paper finds a much stronger relationship between asymmetric IV and excess stock returns. This relationship is not subsumed by the presence of liquidity and information transparency factors. More recently, Brooks et al. (2011) endorse findings that idiosyncratic risk commands a risk premium that is unrelated to Size, and Book-to-Market risk factors.

The stronger relationship for Canadian equities in contrast with US findings may be explained on several bases. Canadian firms compared to US Firms are on average smaller, have lower market power, and face higher product market competition under NAFTA. This greater uncertainty is incorporated in higher unmitigated idiosyncratic volatility. Bekaert et al. (2010) have recently found that idiosyncratic volatility moves into short-term periods of higher regime change. This regime change may be reflected in our pricing relationship through the private information flow (Taylor 2008) captured by our liquidity factor and two control variables, namely synchronicity (Morck et al. 2000), and the zero return trade metric (Ashbaugh-Skaife et al. 2006).

Irvine and Pontiff (2009) attribute the upward trend in idiosyncratic volatility to increased market competition and lower power. However, Bekaert et al. (2010), observe only an increase in correlation of idiosyncratic volatilities across countries, implying that markets become increasingly integrated. Both implicitly acknowledge that cash flow shocks, lower return on assets, and consequent lower market power and short-term higher uncertainty regime changes, influence the idiosyncratic volatility pricing relationship. While, model dependencies and metrics determining non-systematic risk may influence the relationship, the Canadian industry spectrum is less atomic vis-à-vis the US, and except for some core sectors is confronted with lower market power firms, resulting in our stronger observed pricing relationship of idiosyncratic volatility and returns for Canadian stocks. The findings in this paper are reaffirmed by the investor under-diversification or poorly-diversified portfolios observed by Brockman et al. (2009) and Brooks et al. (2011). While, interesting research potential linking various volatility metrics to fundamental variables exist, this study demonstrates that the Canadian return-idiosyncratic volatility relationship is different than in the US, and that it survives after adjustment for systematic risk, liquidity, synchronicity, and firm-specific information.
Table 1

Time-series averages of the second-step cross-sectional regression results using contemporaneous excess returns, betas, IVs and controls (e.g., amortized spreads) based on first-step 60-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions with and without the control variables (designated “W/out” and “W/out” below) for six samples of Canadian stocks are reported in this table. The regressions use contemporaneous betas derived from the Carhart 4-factor model using a 60-month moving window, and contemporaneous estimates for IV, LIQ, SYNCH and VROM. First-step beta estimates from the Carhart model are: \(\hat{\beta}_{\text{MKT}}^{it} \) and \(\hat{\beta}_{\text{MKT}}^{it} \) for the excess market return when nonnegative and negative, respectively, for firm \(i \) in month \(t \); \(\hat{\beta}_{\text{SMB}}^{it} \) for the small minus big size factor; \(\hat{\beta}_{\text{HML}}^{it} \) for the high minus low book-to-market factor; and \(\hat{\beta}_{\text{WMF}}^{it} \) for the momentum factor. \(W_{it}^c \) and \(W_{it}^b \) are the idiosyncratic standard deviations from the first-step Carhart 4-factor model that are signed based on the security returns using a similar method as that used to sign the market betas. The controls are \(LIQ_{it}^{AS} \), \(SYNCH_{it} \) and \(VROM_{it} \). They are respectively liquidity as proxied by the amortized spread of Chalmers and Kadlec (1998), which is obtained by dividing the product of the absolute difference between the trade and mid-spread prices and the traded volume by the product of the trade price times the number of shares outstanding; synchronicity, as proxies by \(\gamma_{it} = \text{Ln} \left[R_i^2 / (1 - R_i^2) \right] \), where the \(R^2 \) values are from the first-step regressions; and the zero-trade, zero-return measure, which is given by the \(\text{Ln} \) of the percentage of non-zero-trade-return days in a month. \(CL_{\text{TSX}} \) refers to the TSX trades of TSX-listed stocks cross-listed on U.S. trade venues. T-values are reported in the parentheses. “a”, “b” and “c” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various second-step cross sections are reported under “#Firms”. The average second-step \(R^2 \) values are reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CL-\text{TSX}</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>W/out</td>
<td>W/out</td>
<td>W/out</td>
<td>W/out</td>
<td>W/out</td>
<td>W/out</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0192**</td>
<td>-0.0186 (1.56)</td>
<td>-0.0212* (1.44)</td>
<td>-0.0216 (1.95)</td>
<td>-0.0195 (1.33)</td>
<td>-0.0115 (1.33)</td>
</tr>
<tr>
<td>(\hat{\beta}_{\text{MKT}}^{it})</td>
<td>0.0468* (2.78)</td>
<td>0.0448* (2.78)</td>
<td>0.0453* (2.78)</td>
<td>0.0318 (1.33)</td>
<td>0.0398 (1.33)</td>
<td>0.0122 (1.33)</td>
</tr>
<tr>
<td>(\hat{\beta}_{\text{SMB}}^{it})</td>
<td>0.0113 (0.51)</td>
<td>0.0127 (0.51)</td>
<td>0.0152 (0.51)</td>
<td>0.0068 (1.11)</td>
<td>0.0098 (1.11)</td>
<td>0.0003 (1.11)</td>
</tr>
<tr>
<td>(\hat{\beta}_{\text{HML}}^{it})</td>
<td>-0.0020 (1.27)</td>
<td>-0.0029 (1.27)</td>
<td>-0.0018 (1.27)</td>
<td>0.0022 (1.11)</td>
<td>0.0015 (1.11)</td>
<td>-0.0014 (1.11)</td>
</tr>
<tr>
<td>(\hat{\gamma}_{it})</td>
<td>0.0014 (0.75)</td>
<td>0.0014 (0.75)</td>
<td>0.0014 (0.75)</td>
<td>0.0010 (1.11)</td>
<td>0.0010 (1.11)</td>
<td>0.0010 (1.11)</td>
</tr>
<tr>
<td>(\hat{\beta}_{\text{WMF}}^{it})</td>
<td>-0.0103 (0.75)</td>
<td>-0.0106 (0.75)</td>
<td>-0.0009 (0.75)</td>
<td>0.0078 (0.39)</td>
<td>0.0016 (0.39)</td>
<td>-0.0074 (0.39)</td>
</tr>
<tr>
<td>(W_{it}^c)</td>
<td>0.8736 (23.14)</td>
<td>0.8296 (21.58)</td>
<td>0.8988 (22.40)</td>
<td>0.9485 (16.60)</td>
<td>0.9350 (16.60)</td>
<td>0.8871 (16.60)</td>
</tr>
<tr>
<td>(W_{it}^b)</td>
<td>-0.3725 (18.52)</td>
<td>-0.3979 (18.07)</td>
<td>-0.3611 (16.08)</td>
<td>-0.4991 (15.21)</td>
<td>-0.4880 (15.21)</td>
<td>-0.4702 (15.21)</td>
</tr>
<tr>
<td>(LIQ_{it}^{AS})</td>
<td>13.6474 (7.33)</td>
<td>12.3875 (6.50)</td>
<td>2.5959 (0.90)</td>
<td>13.9812 (5.96)</td>
<td>15.6545 (6.61)</td>
<td>5.0081 (8.04)</td>
</tr>
<tr>
<td>(SYNCH_{it})</td>
<td>0.0016 (1.17)</td>
<td>0.0021 (1.37)</td>
<td>-0.0013 (1.37)</td>
<td>0.0000 (1.37)</td>
<td>0.0000 (1.37)</td>
<td>0.0000 (1.37)</td>
</tr>
<tr>
<td>(VROM_{it})</td>
<td>-0.0049 (0.64)</td>
<td>-0.0038 (0.51)</td>
<td>-0.0273 (0.74)</td>
<td>-0.0082 (1.32)</td>
<td>-0.0039 (1.32)</td>
<td>0.0157 (1.32)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.45</td>
<td>0.48</td>
<td>0.46</td>
<td>0.49</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td># Firms</td>
<td>237,625</td>
<td>197,476</td>
<td>35,70</td>
<td>160,499</td>
<td>70,164</td>
<td>35,69</td>
</tr>
</tbody>
</table>
TABLE 2

Time-series averages of the second-step cross-sectional regression results using contemporaneous excess returns, betas and controls (e.g., amortized spread) and lagged IVs based on first-step 60-month moving windows

The variables are as detailed in Table 1 above. T-values are reported in the parentheses. “a”, “b” and “c” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various second-step cross sections are reported under “#Firms”. The average second-step R² values are reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CL_TSX</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.0075a</td>
<td>0.0270b</td>
<td>-0.0094a</td>
<td>0.0220a</td>
<td>-0.0087</td>
<td>0.0753b</td>
</tr>
<tr>
<td>(\beta_{\text{MKT}}^{1,1})</td>
<td>0.0577b</td>
<td>0.0698b</td>
<td>0.0580b</td>
<td>0.0671b</td>
<td>0.0121</td>
<td>0.0275</td>
</tr>
<tr>
<td>(\beta_{\text{MKT}}^{1,2})</td>
<td>0.0318</td>
<td>0.0207</td>
<td>-0.0177</td>
<td>-0.0199</td>
<td>-0.0281</td>
<td>-0.0312</td>
</tr>
<tr>
<td>(\beta_{\text{SMID}}^{2,1})</td>
<td>-0.0012</td>
<td>-0.0015</td>
<td>-0.0006</td>
<td>-0.0010</td>
<td>0.0023</td>
<td>0.0031</td>
</tr>
<tr>
<td>(\beta_{\text{SMID}}^{2,2})</td>
<td>0.0043</td>
<td>0.0044</td>
<td>0.0046</td>
<td>0.0045</td>
<td>0.0020</td>
<td>0.0022</td>
</tr>
<tr>
<td>(\beta_{\text{SMID}}^{2,3})</td>
<td>-0.0168</td>
<td>-0.0188</td>
<td>-0.0128</td>
<td>-0.0151</td>
<td>0.0102</td>
<td>0.0103</td>
</tr>
<tr>
<td>(W'_{1,1})</td>
<td>0.7411b</td>
<td>0.6773b</td>
<td>0.7690b</td>
<td>0.7080b</td>
<td>0.8811b</td>
<td>0.8529b</td>
</tr>
<tr>
<td>(W'_{1,2})</td>
<td>-0.4308b</td>
<td>-0.4751b</td>
<td>-0.4211b</td>
<td>-0.4619b</td>
<td>-0.5291b</td>
<td>-0.5412b</td>
</tr>
<tr>
<td>(\text{LIQ}_{4,1})</td>
<td>17.2281b</td>
<td>15.7971b</td>
<td>15.9791b</td>
<td>15.9791b</td>
<td>0.4780</td>
<td>0.4780</td>
</tr>
<tr>
<td>(\text{SYNC}_{4,1})</td>
<td>-0.0028b</td>
<td>-0.0028b</td>
<td>-0.0028b</td>
<td>-0.0028b</td>
<td>-0.0041b</td>
<td>-0.0041b</td>
</tr>
<tr>
<td>(VROM_{4,1})</td>
<td>-0.0268b</td>
<td>-0.0268b</td>
<td>-0.0268b</td>
<td>-0.0268b</td>
<td>-0.0718b</td>
<td>-0.0718b</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.42</td>
<td>0.45</td>
<td>0.43</td>
<td>0.46</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td># Firms</td>
<td>237,614</td>
<td>197,468</td>
<td>35,70</td>
<td>160,493</td>
<td>69,161</td>
<td>69,161</td>
</tr>
</tbody>
</table>
TABLE 3

Time-series averages of the second-step cross-sectional regression results using contemporaneous excess returns, betas, IVs and controls (e.g., amortized spreads) based on first-step days-within-the-month moving windows

The variables are as detailed in Table 1 above. T-values are reported in the parentheses. "a", "b" and "c" indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various second-step cross sections are reported under "#Firms". The average second-step R^2 values are reported in the table.

<table>
<thead>
<tr>
<th>Sample Variable</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CL-ITX</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
</tr>
<tr>
<td>β_{MKT}</td>
<td>0.0009</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0017</td>
<td>0.0011</td>
<td>0.0014</td>
</tr>
<tr>
<td>β_{SMB}</td>
<td>-0.0006</td>
<td>-0.0007</td>
<td>-0.0007</td>
<td>-0.0001</td>
<td>-0.0001</td>
<td>-0.0008</td>
</tr>
<tr>
<td>β_{HML}</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0005</td>
<td>0.0021</td>
<td>0.0001</td>
</tr>
<tr>
<td>β_{LIQ}</td>
<td>-0.0012</td>
<td>-0.0012</td>
<td>-0.0014</td>
<td>-0.0003</td>
<td>-0.0002</td>
<td>-0.0012</td>
</tr>
<tr>
<td>β_{SYNC}</td>
<td>0.0071</td>
<td>0.0065</td>
<td>0.0068</td>
<td>0.0066</td>
<td>0.0059</td>
<td>0.0064</td>
</tr>
<tr>
<td>β_{CL}</td>
<td>0.9605</td>
<td>0.9628</td>
<td>0.9427</td>
<td>0.9417</td>
<td>1.0839</td>
<td>1.0919</td>
</tr>
<tr>
<td>β_{IT}</td>
<td>-0.5017</td>
<td>-0.4965</td>
<td>-0.4906</td>
<td>-0.4875</td>
<td>-0.6059</td>
<td>-0.6013</td>
</tr>
<tr>
<td>LIQ_{it}</td>
<td>3.0382</td>
<td>2.8472</td>
<td>2.8472</td>
<td>9.2014</td>
<td>3.9728</td>
<td>3.6424</td>
</tr>
<tr>
<td>$SYNC_{it}$</td>
<td>0.0045</td>
<td>0.0043</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0030</td>
<td>0.0073</td>
</tr>
<tr>
<td>$VROM_{it}$</td>
<td>0.0410</td>
<td>0.0369</td>
<td>0.0369</td>
<td>0.0430</td>
<td>0.0187</td>
<td>0.0446</td>
</tr>
<tr>
<td>R^2</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.60</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td># Firms</td>
<td>247,1044</td>
<td>202,842</td>
<td>43,202</td>
<td>183,725</td>
<td>39,319</td>
<td>35,115</td>
</tr>
</tbody>
</table>
Time-series averages of the second-step cross-sectional regression results using contemporaneous excess returns, betas and controls (e.g., amortized spreads) and lagged IVs based on first-step days-within-the-month moving windows

The variables are as detailed in Table 1 above. T-values are reported in the parentheses. “a”, “b” and “c” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various second-step cross sections are reported under “#Firms”. The average second-step R^2 values are reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CLTSX</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
<td>W/out</td>
<td>With</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.0007 (0.33)</td>
<td>-0.0411* (-6.99)</td>
<td>0.0014 (0.66)</td>
<td>-0.0407* (-6.71)</td>
<td>-0.0019 (-7.67)</td>
<td>-0.0227 (-1.40)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{1,t}$</td>
<td>0.0010* (1.97)</td>
<td>0.0010* (1.86)</td>
<td>0.0005 (1.02)</td>
<td>0.0006 (1.07)</td>
<td>0.0025* (3.37)</td>
<td>0.0032* (3.66)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{2,t}$</td>
<td>0.0001 (0.14)</td>
<td>-0.0001 (-0.12)</td>
<td>0.0001 (0.19)</td>
<td>0.0000 (0.03)</td>
<td>0.0005 (0.62)</td>
<td>0.0003 (0.32)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{3,t}$</td>
<td>-0.0002 (-0.23)</td>
<td>-0.0001 (-0.08)</td>
<td>-0.0001 (-0.09)</td>
<td>-0.0005 (-0.05)</td>
<td>-0.0007 (-2.27)</td>
<td>-0.0007 (-2.20)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{4,t}$</td>
<td>-0.0007 (-0.67)</td>
<td>-0.0006 (-0.64)</td>
<td>-0.0010 (-0.74)</td>
<td>-0.0000 (-0.05)</td>
<td>0.0002 (0.13)</td>
<td>0.0001 (0.06)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{5,t}$</td>
<td>0.0123* (5.18)</td>
<td>0.0121* (5.06)</td>
<td>0.0116* (4.87)</td>
<td>0.0116* (4.84)</td>
<td>0.0096* (8.16)</td>
<td>0.0096* (7.80)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{6,t}$</td>
<td>0.7770* (47.24)</td>
<td>0.7639* (43.60)</td>
<td>0.7602* (43.89)</td>
<td>0.7475* (41.48)</td>
<td>0.8992* (34.67)</td>
<td>0.8676* (32.04)</td>
</tr>
<tr>
<td>$\beta^{M,VT}_{7,t}$</td>
<td>-0.5081* (-49.18)</td>
<td>-0.5177* (-45.78)</td>
<td>-0.5026* (-45.22)</td>
<td>-0.5111* (-32.69)</td>
<td>-0.6098* (-31.22)</td>
<td>-0.6383* (-49.38)</td>
</tr>
<tr>
<td>LIQ_{it}</td>
<td>7.4526 (4.46)</td>
<td>6.7374 (3.84)</td>
<td>6.7374 (3.84)</td>
<td>19.1540 (3.76)</td>
<td>8.0260* (4.48)</td>
<td>8.0260* (4.48)</td>
</tr>
<tr>
<td>$SYNC_{it}$</td>
<td>-0.0002 (-0.39)</td>
<td>-0.0002 (-0.29)</td>
<td>-0.0002 (-0.26)</td>
<td>-0.0002 (-0.26)</td>
<td>-0.0008 (-1.54)</td>
<td>-0.0008 (-1.54)</td>
</tr>
<tr>
<td>$VROM_{it}$</td>
<td>0.0437* (7.81)</td>
<td>0.0440* (7.63)</td>
<td>0.0437* (7.63)</td>
<td>0.0303* (1.96)</td>
<td>0.0240* (4.09)</td>
<td>0.0240* (4.09)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.48</td>
<td>0.49</td>
<td>0.48</td>
<td>0.49</td>
<td>0.55</td>
<td>0.57</td>
</tr>
<tr>
<td># Firms</td>
<td>226,973</td>
<td>184,777</td>
<td>40,196</td>
<td>173,691</td>
<td>31,282</td>
<td>35,112</td>
</tr>
</tbody>
</table>
TABLE 5

Time-series averages of the second-step cross-sectional regression results using contemporaneous excess returns, betas and controls (e.g., Amihud liquidity) and lagged IVs based on first-step days-within-the-month moving windows

The variables are as detailed in Table 1 above. T-values are reported in the parentheses. “a”, “b” and “c” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various second-step cross sections are reported under “#Firms”. The average second-step R² values are reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CL-CLTSX</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.0737<sup>a</sup> (-7.97)</td>
<td>-0.0418<sup>b</sup> (-6.67)</td>
<td>-0.0697<sup>a</sup> (-8.18)</td>
<td>-0.0410<sup>a</sup> (-6.29)</td>
<td>-0.0751<sup>b</sup> (-4.91)</td>
<td>-0.0379<sup>b</sup> (-2.18)</td>
</tr>
<tr>
<td>β<sub>1t</sub></td>
<td>0.0006 (1.63)</td>
<td>0.0010<sup>b</sup> (1.92)</td>
<td>0.0006 (1.42)</td>
<td>0.0006 (1.10)</td>
<td>0.0010<sup>b</sup> (1.50)</td>
<td>0.0028<sup>b</sup> (3.29)</td>
</tr>
<tr>
<td>β<sub>2t</sub></td>
<td>-0.0006 (-1.06)</td>
<td>0.0003 (0.34)</td>
<td>-0.0006 (-1.05)</td>
<td>0.0004 (0.49)</td>
<td>0.0000 (-0.06)</td>
<td>0.0004 (0.44)</td>
</tr>
<tr>
<td>β<sub>3t</sub></td>
<td>0.0005 (0.80)</td>
<td>-0.0001 (-0.07)</td>
<td>0.0005 (0.80)</td>
<td>0.0001 (0.09)</td>
<td>-0.0018<sup>b</sup> (-1.67)</td>
<td>-0.0029<sup>b</sup> (-2.22)</td>
</tr>
<tr>
<td>β<sub>4t</sub></td>
<td>-0.0011 (-1.32)</td>
<td>-0.0007 (-0.63)</td>
<td>-0.0013 (-1.53)</td>
<td>-0.0009 (-0.04)</td>
<td>-0.0001 (-0.05)</td>
<td>-0.0012<sup>c</sup> (-1.78)</td>
</tr>
<tr>
<td>β<sub>5t</sub></td>
<td>0.0065<sup>a</sup> (2.87)</td>
<td>0.0122<sup>a</sup> (5.06)</td>
<td>0.0062<sup>b</sup> (2.75)</td>
<td>0.0114<sup>a</sup> (4.75)</td>
<td>0.0065<sup>a</sup> (6.35)</td>
<td>0.0103<sup>a</sup> (8.33)</td>
</tr>
<tr>
<td>IW<sub>C</sub></td>
<td>0.9664<sup>a</sup> (51.23)</td>
<td>0.7722<sup>a</sup> (44.32)</td>
<td>0.9460<sup>a</sup> (46.96)</td>
<td>0.7535<sup>a</sup> (41.55)</td>
<td>1.1088<sup>a</sup> (39.56)</td>
<td>0.8915<sup>a</sup> (33.11)</td>
</tr>
<tr>
<td>IW<sub>M</sub></td>
<td>-0.4946<sup>a</sup> (-40.65)</td>
<td>-0.5120<sup>a</sup> (-48.36)</td>
<td>-0.4868<sup>a</sup> (-37.36)</td>
<td>-0.5914<sup>a</sup> (-47.90)</td>
<td>-0.5981<sup>a</sup> (-26.57)</td>
<td>-0.6265<sup>a</sup> (-29.62)</td>
</tr>
<tr>
<td>LIQ<sub>E</sub></td>
<td>0.0001<sup>a</sup> (2.15)</td>
<td>0.0003<sup>a</sup> (3.59)</td>
<td>0.0001<sup>a</sup> (2.10)</td>
<td>0.0003<sup>a</sup> (3.64)</td>
<td>0.0001<sup>a</sup> (0.51)</td>
<td>0.0004 (1.60)</td>
</tr>
<tr>
<td>SYN<sub>C</sub></td>
<td>0.0047<sup>a</sup> (6.31)</td>
<td>-0.0003 (-0.50)</td>
<td>0.0046<sup>a</sup> (5.62)</td>
<td>-0.0002 (-0.34)</td>
<td>0.0034<sup>a</sup> (3.74)</td>
<td>-0.0026<sup>a</sup> (5.54)</td>
</tr>
<tr>
<td>VROM<sub>M</sub></td>
<td>0.0440<sup>a</sup> (6.49)</td>
<td>0.0450<sup>a</sup> (7.45)</td>
<td>0.0405<sup>a</sup> (6.32)</td>
<td>0.0449<sup>a</sup> (7.15)</td>
<td>0.0496<sup>a</sup> (3.54)</td>
<td>0.0465<sup>a</sup> (2.82)</td>
</tr>
<tr>
<td>R²</td>
<td>0.58</td>
<td>0.47</td>
<td>0.59</td>
<td>0.48</td>
<td>0.56</td>
<td>0.61</td>
</tr>
<tr>
<td># Firms</td>
<td>256; 1044</td>
<td>233; 973</td>
<td>211; 842</td>
<td>186; 777</td>
<td>44; 202</td>
<td>40; 196</td>
</tr>
</tbody>
</table>
The variables are as detailed in Table 1 above. T-values are reported in the parentheses. “a”, “b” and “c” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in the various cross sections are reported under “#Firms”. The average second-step R^2 values are reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>All Firms</th>
<th>TSX-only</th>
<th>CL-TSX</th>
<th>Big</th>
<th>Small</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Using the amortized spread proxy for liquidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.1169</td>
<td>(-1.94)</td>
<td>-0.1485</td>
<td>(-1.62)</td>
<td>-0.1372</td>
<td>(-2.43)</td>
</tr>
<tr>
<td>IV_{it}</td>
<td>1.0305</td>
<td>(6.15)</td>
<td>0.8319</td>
<td>(9.69)</td>
<td>1.0776</td>
<td>(6.41)</td>
</tr>
<tr>
<td>IV_{it}</td>
<td>-0.4287</td>
<td>(-6.40)</td>
<td>-0.4494</td>
<td>(-12.90)</td>
<td>-0.394</td>
<td>(-4.24)</td>
</tr>
<tr>
<td>LIQ_{it}</td>
<td>3.6606</td>
<td>(2.05)</td>
<td>8.2168</td>
<td>(9.95)</td>
<td>3.2929</td>
<td>(0.89)</td>
</tr>
<tr>
<td>$SYNC_{it}$</td>
<td>0.0053</td>
<td>(0.082)</td>
<td>0.0121</td>
<td>(0.098)</td>
<td>0.0064</td>
<td>(0.105)</td>
</tr>
<tr>
<td>$VROM_{it}$</td>
<td>0.0739</td>
<td>(2.40)</td>
<td>0.1025</td>
<td>(2.51)</td>
<td>0.0854</td>
<td>(3.09)</td>
</tr>
<tr>
<td>Cont.</td>
<td>0.33</td>
<td>0.23</td>
<td>0.32</td>
<td>0.23</td>
<td>0.39</td>
<td>0.30</td>
</tr>
<tr>
<td># Firms</td>
<td>247</td>
<td>1047</td>
<td>226</td>
<td>973</td>
<td>202</td>
<td>842</td>
</tr>
</tbody>
</table>

Panel B: Using the Amihud proxy for illiquidity

Intercept	-0.1191	(-2.03)	-0.1445	(-1.59)	-0.1425	(-2.55)	-0.1799	(-1.78)	0.0218	(0.16)	0.0504	(0.45)	-0.0439	(-1.55)	-0.0315	(-0.76)	-0.1997	(-2.14)	-0.3358	(-1.39)	-0.1744	(-2.17)		
IV_{it}	1.0357	(6.14)	0.8408	(10.01)	1.0908	(6.43)	0.8663	(8.67)	0.8448	(4.44)	0.7417	(3.81)	0.9455	(12.00)	0.8260	(7.99)	1.0740	(5.84)	0.7866	(7.22)	1.1216	(9.81)	0.8986	(10.75)
IV_{it}	-0.3952	(-4.33)	-0.4383	(-13.23)	-0.3533	(-3.76)	-0.4328	(-11.66)	-0.7737	(-4.63)	-0.6915	(-4.63)	-0.4795	(-12.35)	-0.2959	(-21.66)	-0.4468	(-8.68)	-0.1729	(-14.44)				
LIQ_{it}	-0.0001	(0.55)	0.0003	(1.29)	0.0002	(0.17)	0.0003	(0.14)	0.0003	(0.17)	0.0003	(0.15)	0.0003	(0.10)	0.0004	(0.13)	0.0004	(0.09)	0.0006	(0.18)	0.0017			
$SYNC_{it}$	0.0054	(0.84)	0.0112	(0.71)	0.0067	(0.98)	0.0191	(0.98)	0.0034	(0.64)	-0.0105	(-1.22)	0.0010	(0.20)	-0.0037	(-0.82)	0.0046	(0.99)	0.0152	(1.95)	0.0044			
$VROM_{it}$	0.0759	(2.52)	0.1026	(2.59)	0.0886	(3.21)	0.1314	(2.83)	-0.0307	(-0.28)	-0.0098	(-0.11)	0.0304	(1.85)	0.446	(1.64)	0.1132	(2.37)	0.1893	(1.79)	0.0981	(1.44)		
Cont.	0.32	0.22	0.31	0.23	0.39	0.29	0.34	0.25	0.31	0.22	0.39	0.27												
# Firms	256	1044	233	973	211	842	186	777	44	202	40	196	189	725	177	691	39	319	35	128	35	115	35	112

REFERENCES

