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Many industries (e.g. hotel, rental car, cruise line and airline companies) consider secondary revenues a 
major source of profitability. In 2010, for instance, the five largest airlines in the United States received a 
total of $2.7 billion in revenue from baggage fees alone. Some casinos give away rooms since secondary 
activities are so profitable. Secondary revenues cannot occur without the purchase of a primary item. The 
price of the primary item is crucial. We consider optimal inventory levels and prices for primary items. 
We allow the secondary revenue to depend on the price of the primary item. 
 
INTRODUCTION 
 

In 2010, the five largest airlines in the United States (Delta, American, U.S. Airways, Continental and 
United) received a total of $2.7 billion in revenue from baggage fees alone, up from $344 million just 
three years prior (Bureau of Transportation Statistics, U.S. Department of Transportation). Also in 2010, 
hotels in the U.S. recorded revenues of over $127 billion (Hotel Operating Statistics Study, 2010, STR 
Global). These two industries, offering products or services that expire (e.g.; a flight on a plane or an 
evening in a hotel) incur costs of making those products or services available for sale. The number of 
items ultimately sold depends on how many items are made available for sale in the first place, how many 
customers are willing to buy them ah a customer will spend on secondary revenues after purchasing a 
primary item. These two issues (uncertain demand and a perishable product) form the basis of the 
newsvendor problem. 

The classical newsvendor problem only considers the case of one homogeneous good. Of late, there 
has been a lot of interest in many industries on secondary revenue associated with a primary good. The 
most notable examples are in the airline industries. Indeed airlines such as Spirit and Ryan Air offer rock 
bottom prices for seats (the primary item) and get much of their overall revenue from secondary sources 
such as checked bag and seat assignment fees. Indeed, Spirit and Allegiant even charge for cabin 
baggage! For cut rate airlines, such secondary pricing is expected by passengers. For other airlines, where 
the basic item is not as drastically reduced in price, charging for seat selection, etc. can result in customer 
dissatisfaction. In the gambling industry, the return from secondary revenues can be so great that a vendor 
will give the primary item away for free. This for instance is the case for Harrah’s where free rooms are 
provided to customers who are expected to spend a lot at the casino. Indeed, if all rooms are taken, 
Harrah’s will often pay for a room at a hotel other than their own in order to obtain secondary revenues. 
(Metter’s et al, 2008.) 
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In the classical news vendor problem, the goal is to find the optimal inventory level for a given price. 
Of late, there has been increased interest in jointly deriving both the price and infantry level. (See Raz and 
Porteus, 2006, Wilson and Sorochuk, 2009 and Wilson et al., 2011.) The first to approach the newsvendor 
problem with price as a decision variable is Whitin,1955.The first challenge in allowing prices to be a 
variable is modeling demand, where “…the demand function shows, in equation form, the relationship 
between the quantity sold of a good or service and one or more variables” (Samuelson and Marks, 2010). 
In modeling the news vendor problem, it has been commonplace to assume an arbitrary but 
mathematically tractable form for the expected demand function. The most common forms are linear (

bPa − ) and iso-elastic ( baP−  ). For stochastic demand, the next step is usually to assume either linear or 
multiplicative uncertainty. Typically the uncertainty term is assumed to be independent of price. (For an 
exception, see Young,1979). Often, little justification is given for these assumptions. For a discussion of 
these assumptions and a comparison of the different approaches see Wilson et al., 2011. In any case, once 
a demand model has been chosen, solving the newsvendor problem with pricing begins in a variety of 
ways, depending on the conditions. Two examples are Karlin and Carr (1962) and Petruzzi and Dada 
(1999). 

Following Wilson and Sorochuk 2009, we follow a different approach and assume that the maximum 
amount a randomly selected customer is willing to pay (the “reservation price ") is a random variable 
which can be derived from marketing studies. We model the newsvendor problem with secondary items 
and, in addition to the inventory level, we the primary price to be decision variable. The modeling of 
secondary revenues is starting to generate interest in the academic community. For instance see Allon et 
al., 2011 and Shulman and Geng, 2012. Early papers to consider this include Fort (2004), Marburger 
(1997) and Rosenfield (1997). 

We start by briefly describing the classical news vendor problem. Then we summarize our approach 
to modeling demand where we make no a-priori assumptions about the mathematical form of demand 
functions. Our approach to modeling secondary revenues is then described and we provide expressions 
for the expected value and variants of total profit for given levels of inventory level and price. We then 
provide a number of examples. First, we consider the distribution of profit values as parameters (such as 
the expected value of the secondary revenue from a customer) are varied. 
 
THE NEWSVENDOR PROBLEM 
 

In the basic form of the newsvendor problem, a seller of an inventory of a homogeneous product 
attempts to maximize expected profit by deciding on an inventory quantity Q, before knowing exactly 
how many customers will want to buy an item at an exogenous price, P. For each unit of inventory the 
seller decides to make available for sale, a constant marginal cost of c is incurred ( cP > ), regardless of 
whether or not the item is ultimately sold. Although the newsvendor problem has been expanded to 
include the possibility of salvage value for unsold items, here it is assumed that the items are worthless if 
not sold at full price. Denote the number of customers willing to pay price P for an item as random 
variable )(PX  with corresponding cumulative distribution function )()( ⋅PXF . Given these conditions, the 

profit-maximizing quantity, *Q , is determined by the well-known fractile solution:  

,)( 1
)(

* 





 −

= −

P
cPFPQ PX  

where )(1
)( ⋅−

PXF  denotes the inverse cumulative distribution function of demand. (For the case where Q is 

only allowed to take on discrete values, )(* PQ  is the smallest integer value of Q that is greater than or 
equal to the right-hand side of the above expression.) 
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GENERAL MODEL OF DEMAND 
 

Consider demand as a choice model where each customer in the population has a choice – buy or not 
buy one item that is available for sale. Here, individual consumer behaviour is modelled and aggregated 
into the demand for the product. 

The size of the customer base interested in the product is provided by a random variable D (or d in the 
case of a deterministic customer base). A randomly selected customer has a reservation price represented 
by the random variable RP whose cumulative distribution function will be denoted by )(⋅RPF . This 
assumption captures a wide range of realistic behaviours. We do not require a ‘low before high” 
assumption and assume that customers arrive at random. These assumptions lead directly to appropriate 
demand equations without the need to assume specific mathematical forms for expected demand. (A 
discussion on the use of this approach versus assuming specific mathematical demand equations can be 
found in Wilson and Sorochuk, 2009) 

Given this framework, demand, the number of customers willing to buy an item at price P, is a 
random variable, and is denoted X(P). For a deterministic customer base, d, the random demand follows a 
binomial distribution with probability mass function, )()( ⋅PXh , given by   

( ) ( ) ( ) dxPFPF
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(The modification for the case where the number of customers is random is to condition the above on the 
event D=d, multiply by P[D=d] and sum over d.) The cumulative distribution function, )()( ⋅PXF , is given 

by ( ) ( ) .)()(1)(
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Note that the normal approximation to the binomial distribution can be used to model X(P) as a 
normal random variable with mean, and variance given by ( ))(1)( PFd RPPX −=µ  and, 

( )( ),)()(12
)( PFPFd RPRPPX −=σ respectively--provided both parameters are greater than five. Thus, even 

for large values of d, computations are not unduly complex 
 
SECONDARY REVENUE 
 

Secondary profits can be realized only after a customer has purchased a primary item. We represent 
the secondary revenue obtained from a given customer by the random variable S(P), where P is the price 
of the primary item. This formulation allows for the study of a number of realistic situations. There will 
be cases where S(P) does not actually depend on P and will be denoted simply by S. For instance, for a 
range of prices at a ball game, one could reasonably expect that the amount a customer spends on beer is 
unrelated to the admission price. For casino hotels, it can be reasonable to suppose that the amount many 
customers will gamble is not very related to the room rate. There are also situations where a customer has 
a total budget and anything spent on the primary item will reduce the amount spent on secondary items. 
One can think of a family of four, say, with a fixed budget going to Disneyworld—too expensive an 
admission price will reduce the amount available for secondary purposes and might, indeed, preclude a 
family going at all. Then there are cases common in the marketing of high priced items such as cars. 
There a high primary price can make a customer less reluctant to buy extras such as racing stripes since, 
even though objectively the racing stipe might cost a lot, its price pales in comparison to the tens of 
thousands spent on the car.  
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THE PROFIT FUNCTION  
 

Let Z1(P,Q) denote the number of primary items that are sold if the inventory of primary items is Q 
and the price of a primary item is P, i.e. Z1(P,Q)=min(X(P),Q). Let ),( QPTotalΠ be the random variable 
that gives the total profit. Then, the expected total profit for a seller who receives revenue from the sale of 
secondary items in addition to the revenues from the sale of primary items is  

 
( ) cQPSEPQPZEQPE Total −+=Π )]([)],([)],([ 1 . 

 
Comparing the above expected profit of formulation to that of the classical news vendor problem, the 

optimal order quantity for a given price P is given by 
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Expected profit is not always the most important criterion for Newsvendor problems. If it is a one-

shot event (a special concert for instance) rather than a repeated serious of problems (e.g., the same flight 
leaving every day), then the distribution of possible profit values—in particular the standard deviation or 
variance—becomes important. The variance in total profit for a seller who receives profit from the sale of 
secondary items in addition to the revenues from the sale of primary items is given by  

 
( ) ( ) ( ) ( ).),(])([][)(),( 1

2
1 QPZVarPPSEZEPSVarQPVar Total ++=Π  

 
(Derivations for the expected value and variance can be found in the Appendix.) 
 
EXAMPLES – SECONDARY REVENUE INDEPENDENT OF PRICE 
 

To demonstrate the sensitivity of the profit distribution to certain variables in the model, some 
numerical examples are provided. In each example, one of the parameters needed to calculate profit is 
varied, while the others are held constant. For a given set of values, demand (the number of customers 
willing to pay price P for a primary item) as well as total profit from secondary items are randomly 
generated and used to calculate profit. The process is repeated 100,000 times for each set of values, and 
the results to show the relative frequency of total profits. This provides an empirical probability function 
for the random variable ).,( QPTotalΠ  

For these examples, the size of the customer base is fixed at 50=d and the cost of making each 
primary item available for sale at 10=c . The maximum amount, RP, that a randomly-selected customer 
is willing to pay for an item is random and follows a normal distribution with a mean of ][RPE and a 
standard deviation of 10, i.e. )10],[(~ =RPRPENRP σ .. The secondary item revenue received from a 
customer who has already purchased a primary item is assumed independent of P and follows a normal 
distribution given by )10],[(~ =SSENS σ . The number of primary items made available for sale by 
the seller is 40=Q .  

 
Sensitivity to Changes in Expected Reservation Prices 

Here we set P and E[S] equal 50. Figure 1 shows the sensitivity of the total profit distribution to the 
mean reservation price, ],[RPE as it varies from 30 to 60 in increments of 10.  
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Naturally, as the expected reservation price increases, so does the likelihood of selling more primary 
items (and gaining secondary profits as well). As expected demand for items increases, either more of the 
available items are sold or they are all sold and there is unmet demand. The change in expected total 
profit is not the same from plot to plot even though the change in expected reservation price is constant 
between plots. For an expected reservation price of 30, the expected profit is negative. However, a small 
fraction of the time it is positive. Consider how variance in total profit changes as reservation price 
increases. Recall the expression for variance: 

 
( ) ( ) ( ) ( )1

2
1 ][][),( ZVarPSEZESVarQPVar Total ++=Π . 

 
Although it appears at first glance that variance should increase continually as more customers are 

willing to buy an item, if the expected reservation price is high demand will often exceed supply and 
stock-outs will occur which means a smaller variance in the number of items sold.  

This phenomenon is seen in the plot for an expected reservation price of 60 where the spread of 
values is much smaller than for the other values for expected reservation price. 
 

FIGURE 1 
SENSITIVITY OF TOTAL PROFIT TO CHANGES IN EXPECTED RESERVATION PRICE 
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Sensitivity to Changes in Expected Secondary Revenues 
In Figure 2, P and E[RP] are set equal to50. The expected value, E[S], a randomly selected customer 

will pay for secondary items is varied from 30 to 70 in increments of 10. 
 

FIGURE 2 
SENSITIVITY OF TOTAL PROFIT TO CHANGES IN EXPECTED SECONDARY PROFIT 

 

 
 

The effect of different secondary profits is not nearly as large as those seen in Figure 1. While 
increasing the expected secondary profit does increase the variance and shift the profit function in the 
positive direction, the overall effect of increased expected profit is small. 

This can be explained using the expression for expected profit: 
 

( ) cQSEPZEQPE Total −+=Π ][][)],([ 1 . 
 

The expected total profit increases linearly with expected secondary profit, up to the point where no 
more customers can purchase a primary item (and therefore contribute secondary profit to the seller). 

The increased variance in total profit seen in Figure 2 is explained by the ][ PSE +  term in the 
expression for variance 

 
( ) ( ) ( ) ( ).][][),( 1

2
1 ZVarPSEZESVarQPVar Total ++=Π  
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As expected secondary profit increases, so does the right hand side of the above expression. 
 

Sensitivity to Changes in the Selling Price 
In Figure 3, five functions demonstrate the effect of different selling prices on profit. Here, the selling 

price P takes on values of 30, 40, 50, 60 and 70 while E[S] and E[RP] equal 50. At a low selling price (P 
= 30), profits are high since many customers are willing to pay even P = 40 for a ticket. The result is not 
only high revenues from ticket sales, but as a result more customers available to purchase secondary 
items. At a high selling price (P = 60), profits are low, as fewer customers are willing to pay P = 60 for a 
ticket. The result is not only low revenues from ticket sales, but fewer customers available to purchase 
secondary items. At some point increasing the price will reduce the demand and an increase in P will not 
be enough to offset the revenue lost from fewer customers and less secondary revenue. 

Increasing the selling price increases the ][ PSE +  term on the right-hand side of the expression for 
variance: 

 
( ) ( ) ( ) ( )1

2
1 ][][),( ZVarPSEZESVarQPVar Total ++=Π . 

 
However, if primary items are priced such that very few are willing to purchase everyone is then the 

variance in profit is mostly due to the variance in secondary profits since ( )1ZVar is then small. 
 

FIGURE 3 
SENSITIVITY OF TOTAL PROFIT TO CHANGES IN SELLING PRICE 
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EXAMPLES – SECONDARY REVENUE DEPENDENT ON PRICE 
 

In this section, we allow the secondary revenues to depend on Price specifically, we assume that the 
expected value of secondary revenue is linearly related to price, i.e. E[S(P)] = a+bP, for some a and b. 
This can encompass a number of realistic situations. For instance, the situation where a customer has a 
total budget of a is covered by taking b equal to -1. The case b>0 allows for the effect (commonly seen 
for customers buying high-priced items such as cars) where a customer is willing to pay more for 
secondary item as the primary price increases. The case b<0 models the situation where a customer will 
pay less for a secondary item as the primary price increases. 

In Figure 4, we consider the case where the possible number of customers is 25, a=5 and the 
reservation price is normally distributed with a mean of 10 and a standard deviation of 3. Here we allow 
the cost of an item to take on values of 1, 5, 10 and 15 and look at how optimal inventory levels, optimal 
prices and optimal profits vary as a function of b. These optimal values are obtained by maximizing the 
expected profit function given previously. 
 

FIGURE 4(A) 
OPTIMAL PRICES FOR 3)(10,~ NRP , 25d = , AND 5a =  
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FIGURE 4(B) 
OPTIMAL INVENTORY LEVELS FOR 3)(10,~ NRP , 25d = , AND 5a =  

 

 
 

FIGURE 4(C) 
OPTIMAL EXPECTED PROFITS FOR 3)(10,~ NRP , 25d = , AND 5a =  
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As expected and seen in Figure 4(c), optimal expected profits increase as b increases and c decreases. 
(The cases where expected profit is negative are excluded from the graphs.) Let's consider the case where 
you the cost of the primary item is small (c=1, c=5). From Figure 1(c), at b=-1, the optimal price is very 
low. As discussed above, this case corresponds to the situation where the expected total amount of 
customers willing to pay for both primary and secondary items is fixed (here at a=5). So here, ideally, 
prices should be set low in order to maximize the number of people who will buy the primary item. 
(Recall that secondary revenue only occurs when the primary item is purchased.) Consider the case where 
c=15. Here the optimal price at b=-1 is so low relative to the reservation price has to be practically equal 
to zero. (Almost all customers will buy at this price since the expected reservation price is 10 with a 
standard deviation of 3.) For high fixed costs (c=10 or c= 15), it is not optimal to offer items since 
expected total budget per customer of five is not sufficient to cover costs. This situation can also be seen 
from Figure 4(b). At b=-1 and c=1, it is optimal to stop as many items as there are possible customers. At 
b=-1 and c=5, fewer items will be stalked since the item cost c is higher. For the two higher values of c, 
the optimal inventory level is zero. For high item costs, as b increases, the optimal prices becomes smaller 
and smaller in an effort to obtain more customers willing to pay the primary price since the secondary 
revenues go up for these customers as a function of primary item price. 

In Figure 5, the reservation price now has a mean of five, a standard deviation of 1.5 and a = 10. Parts 
(a) and (b) give the optimal prices and infantry levels, respectively, while part (c) gives the optimal 
profits. The plots exhibited similar behavior to those in Figure 4. 

 
FIGURE 5(A) 

OPTIMAL PRICES FOR )1(5,~ 5.NRP , 25d = , AND 10a =  
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FIGURE 5(B) 
OPTIMAL INVENTORY LEVELS FOR )1(5,~ 5.NRP , 25d = , AND 10a =  

 

 
 
 

FIGURE 5(C) 
OPTIMAL EXPECTED PROFIT FOR )1(5,~ 5.NRP , 25d = , AND 10a =  
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CONCLUSION 
 

In this paper, we have shown modeling the effect of secondary revenues can be accomplished by 
modifying the basic newsvendor problems. In some circumstances, it can make sense to heavily discount 
the primary item in order to achieve maximum secondary revenues. Such modeling becomes increasingly 
more important as industries adopt models where much of their profit is obtained through secondary 
revenues. "Carnival, for instance, recently reported that 'onboard other revenue' jumped from$936 million 
in the third quarter of 2011 to $965 million in the third quarter of this year. Meanwhile, ticket revenue 
declined from $3.9 billion to $3.6 billion over the same period. (See Trejos, 2012.)  
 
APPENDIX: EXPECTED VALUE AND VARIANCE OF PROFIT 
 

First, we demonstrate that for seller of homogeneous items who also receives a random amount of 
secondary revenues for each item sold, the expected profit is given by

( ) cQPSEPQPZEQPE Total −+=Π )]([]),([)],([ 1 , where ),(1 QPZ  = ( ))(,min PXQ  denotes the 
number of primary items that are sold and )]([ PSE  denotes the expected revenue from secondary items. 

The profit can be written as  

( )
( )
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i
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where ),(2 QPZ denotes the amount 
( )

∑
=

)(,(min

1
)(

PXQ

i
i PS received from secondary sales. The expected revenue 

from secondary items, ),(2 QPZ , is the random sum of random variables and, from Wald’s lemma, has 
an expectation equal to )([]),([ 1 PSEQPZE ]. Thus, taking expectations the expected profit can be 
written as 
 

.)]([]),([]),([)],([ 11 cQPSEQPZEQPZPEQPE Total −+=Π  
 

Now justify the formula for the variance of total profit. Note that the profit can be written as follows: 
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From the Law of Total Variance, 
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as required. 
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