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Drivers’ response to an unexpected gasoline price spike is examined using daily data from San Diego 
County. Elasticities of demand are calculated for the very short run and are compared to prior short run 
and long run elasticity estimates. Public transportation use is also examined and a cross-price elasticity 
for bus travel is estimated. The immediate effects of a gasoline price spike are found to be close to zero, 
but results are broadly consistent with prior short-run estimates after 10 days. 
 
INTRODUCTION 
 

In October 2012 California suffered a series of supply shocks in the gasoline market. There were two 
major events. The first was a fire at a Chevron refinery in Richmond (near San Francisco) that 
dramatically reduced its capacity. The Richmond facility has a capacity of 243,000 barrels per day, and 
typically refines over 8% of the total gasoline output supplied to the Petroleum Administration for 
Defense District 5, of which California is a part. The second shock was a power outage that shut down an 
ExxonMobil refinery in Torrance (near Los Angeles).  The Torrance refinery has a capacity of 149,000 
barrels per day. 

The sudden decrease in supply caused a significant increase in retail gasoline prices. The October 
price spike was unprecedented, even given California’s isolated and volatile gasoline market. Retail 
prices jumped about 57 cents within one week, about a 14% increase. This sudden price spike is 
comparable only to the results seen after natural disasters like Hurricane Katrina or superstorm Sandy. 

How do drivers respond to an unexpected and significant gasoline price increase?  We examine this 
question using data from San Diego County.  

 
CALIFORNIA GASOLINE PRICES 

 
California gasoline prices are typically at least 30 cents per gallon higher than the national average. 

Higher state gasoline taxes account for about 20 cents of that gap, and a large portion of the remainder is 
explained by California’s air quality regulations that require a higher quality gasoline to reduce air 
pollution. The special blend used in California is not used in other nearby states so production shortfalls 
cannot easily be offset by bringing in refined gasoline from elsewhere.  
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California, along with the rest of the nation, has experienced a recent increase in the volatility of gas 
prices. National average gasoline prices rose nearly 50 cents a gallon in the first two months of 2013 
alone, after a slow decline in late 2012, when seasonally adjusted energy prices fell. 

The price of gasoline has a large impact on family budgets since gasoline purchases represent a large 
portion of monthly spending for many families. Transportation and transportation services comprise a 
large fraction of the national economy, so insights on how consumers react to sudden gas price changes 
are important to policy makers and forecasters in this increasingly volatile market. 

In this study we concentrate on data from San Diego County. Using daily data, the average price of 
regular unleaded gas in September 2012 was $4.116 per gallon. The daily average price over the month 
was quite steady, with a maximum of $4.140 and a minimum of $4.094. In October the average price 
jumped to $4.414 per gallon. The peak daily average price was $4.708, reached on October 7. The 
minimum in October was $4.024. Figure 1 shows the average daily regular unleaded retail gasoline price 
for September and October of 2012 for San Diego County. In this study we examine how drivers in San 
Diego County responded in the short run to this sudden spike in gasoline prices.  

 
FIGURE 1 

AVERAGE UNLEADED RETAIL GAS PRICE, SAN DIEGO COUNTY, SEPT-OCT 2012 
 

 
 
 
PRIOR LITERATURE 

 
There are many papers that have estimated short-run and long-run price elasticities for gasoline, 

including several meta-studies that summarize a large number of prior results. Espey (1996) examined 
101 different studies in a meta-analysis and finds that the short-run average price elasticity of demand for 
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gasoline is -0.26. She defines the short run to be one year or less. In the long-run (longer than 1 year) she 
finds an average price elasticity of demand of -0.58. 

More recent work suggests that short-run price elasticities are lower now, and have decreased over 
time. For example, Hughes, Knittel, and Sperling (2008) examine data over time to analyze short-run 
changes in elasticity. By comparing two different time periods, they find that the short-run gasoline price 
elasticity decreased from a range of -0.21 to -0.34 in the late 1970s to between -0.034 and -0.077 in the 
early 2000s. Some of this decrease is explained by changes in consumer behavior, partly driven by real 
income growth and preferences for suburban living, which increases the need to commute. Other factors 
influencing elasticity include technology advancement and government policies to increase fuel 
efficiency, such as the national Corporate Average Fuel Economy program, which have increased the 
productivity of each gallon purchased. 

A 2008 Congressional Budget Office study reported a short-run retail price elasticity of about -0.06. 
In the long run, however, consumers would be expected to respond more to a price increase because they 
would have more time to make choices that take longer to implement, such as buying a more fuel-
efficient car. The CBO reports estimates of about -0.40 for the long run elasticity of demand for gasoline, 
but this would not be fully realized unless prices remained higher for a long time – up to 15 years – as the 
stock of consumer vehicles gradually is replaced with more efficient substitutes. 

Other studies have examined the impact of changing gasoline prices on vehicle traffic or vehicle 
miles travelled. Goodwin, Dargay and Hanly (2004) find that if the real price of fuel permanently 
increases by 1%, the volume of traffic will decrease about 0.1% within a year, up to an eventual reduction 
of about 0.3% within about five years. Graham and Glaister (2002) report that the short-run elasticity of 
traffic with respect to price is about -0.15 and the long-run value is about -0.30. 

As these studies report, demand is less inelastic in the long run. Driver response in the long run to 
higher gasoline prices can take the form of a new more fuel-efficient car or moving to a location closer to 
work. These are generally not feasible options in the short run, but some lifestyle changes can be made in 
the short run, such as forming carpools, using public transportation, or consolidating tasks to reduce the 
number of miles driven.  

Few studies examine the very short run, which is the focus of this paper. We use daily price and 
traffic volume data to estimate driver response within the first one or two weeks after a price spike. In the 
very short run, some discretionary trips can potentially be rescheduled or eliminated, and public 
transportation can be used as a substitute to driving. We examine the extent to which these options reduce 
driving and calculate appropriate price elasticities to measure driver responsiveness to unexpected higher 
gas prices. 

 
MODEL AND DATA 

 
We wish to examine how drivers respond to a sudden and sizable increase in fuel cost. The standard 

economic prediction is that higher gas prices would lead to reduced gas use and a possible shift to 
substitutes. The effect is likely to be small, however, since demand for gasoline is very price inelastic, 
especially in the short run.  

Gasoline use by freeway drivers can be reduced by making fewer trips. We measure this effect with 
highway traffic vehicle counts in San Diego, California, detected by electronic traffic sensors and 
reported by the California Department of Transportation (CalTrans). Public transportation may be a 
substitute to car travel, so bus ridership before and after the price spike was examined for all routes served 
by the San Diego Metropolitan Transit System (MTS).  

The data used in this study can be thought of as the result of a natural market experiment. The price 
spike has generated data that would not have been easy to obtain otherwise, and the time span is so short 
that it is not necessary to control for changes in population, income, or other demand- or supply-side 
variables. 

We use the following data: (1) Daily average gas price for San Diego County for September-October 
2012; (2) Daily vehicle counts recorded by all California Department of Transportation (CalTrans) 
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District 11 (San Diego County) highway traffic sensors for September-October 2012; (3) Daily bus 
ridership data for all routes served by the San Diego Metropolitan Transit System for September-October 
2012. The values of all three variables were also obtained for September and October 2011 to help control 
for any short-run month-to-month variation. 

 
RESULTS 

 
Embedded sensors in San Diego County freeways record traffic volume. Daily traffic counts from 

between729 and 1244 individual sensors was obtained for each day from September 1 to October 31, 
2012, collected from all of the 13 different freeways in CalTrans District 11 (San Diego County).  Traffic 
volume varies by day of the week (Saturday and Sunday are well below average, for example) so sensor 
data for September and October was paired by sensor and by day of week. The first Monday in September 
was matched with the first Monday in October, for example. Two holidays were removed: Labor Day in 
September and Columbus Day in October.  

A paired t-test was performed using the 30,974 unique day/sensor pairs, comparing the September (S) 
volume to October (O). Each difference, D, is defined as 

 
Dij = Sij – Oij 

 
where the subscripts i and j denote the day and sensor number, respectively. Index i ranges from 1 to 26, 
and j ranges from 1 to between 729 and 1244. 

The mean difference should be positive if October traffic volume is lower than in September, as we 
predict. Table 1 shows the paired two sample test result. 

 
TABLE 1 

2012 TRAFFIC VOLUMES 
 

  September October Difference T Statistic 
Mean 44030.3881 43202.8846 827.5036 42.7201 
Variance 1289496040 1242788149 

 
 

Observations 30974 30974 
 

 
 
 
The observed mean difference is small but highly statistically significant (t = 42.72). The October 

reduction by an average of 827.5 vehicles per sensor per day represents a 1.88% reduction from 
September. When aggregated by day, the October daily volume was less than in September on 24 of the 
26 paired days examined, as shown in Figure 2. 

To check whether such a decrease from September to October is typical, traffic data from the same 
two months in 2011 was examined using the same non-holiday paired comparison. Although mean daily 
traffic volume in 2011 is similar to 2012, no September to October difference in traffic volume was found 
(t = 0.37). The 2011 results are shown in Table 2 and Figure 3. 

 
TABLE 2 

2011 TRAFFIC VOLUMES 
 

  September October Difference T Statistic 
Mean 42881.4708 42873.4364 8.0345 0.3737 
Variance 1304497890 1277284429 

 
 

Observations 31106 31106 
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FIGURE 2 
VEHICLES/DAY DIFFERENCE, ALL FREEWAY SENSORS AGGREGATED PER DAY, 

SEPTEMBER – OCTOBER 2012 

 
 

FIGURE 3 
VEHICLES/DAY DIFFERENCE, ALL FREEWAY SENSORS AGGREGATED PER DAY, 

SEPTEMBER – OCTOBER 2011 

 
 

BUS RIDERSHIP 
 
If public transportation is a substitute for driving then an increase in gasoline price should increase 

mass transit ridership. There are 98 regular bus routes serving the San Diego area provided by the 
Metropolitan Transit System (MTS). Daily ridership data was obtained for all routes in September and 
October for 2011 and 2012.  

A paired comparison of average daily ridership by route from September to October should generate a 
negative difference if ridership increased. The 2012 data show a mean difference of -143.2 riders per 
route, which is an 8.96% overall increase (see Table 3). This increase in ridership is statistically 
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significant (t = -6.05). The same pattern was not observed in 2011, in fact the sign of the difference was 
positive (t = 1.696). The 2011 results are in Table 4. Figures 4 and 5 show the differences graphically. 

 
TABLE 3 

2012 BUS RIDERSHIP 
 

  September October Difference T Stat 
Mean 1598.3830 1741.5800 -143.1970 -6.0491 
Variance 3821417.25 4400641.39   
Observations 98 98   

 
 

TABLE 4 
2011 BUS RIDERSHIP 

 
  September October Difference T Stat 

Mean 1639.3850 1615.9456 23.4394 1.6958 
Variance 3958461.96 3844000.76   
Observations 98 98   

 
 

FIGURE 4 
BUS RIDERSHIP CHANGE BY ROUTE, SEPTEMBER – OCTOBER 2012 
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FIGURE 5 
BUS RIDERSHIP CHANGE BY ROUTE, SEPTEMBER – OCTOBER 2011 

 

 
 
 

ELASTICITIES 
 
In the models below we estimate elasticites with respect to vehicle traffic counts, but these will be a 

close approximation to the gasoline price elasticity if the vehicle mix remains constant over the time 
period being examined. However, it may actually underestimate the true gasoline price elasticity. It is 
likely that higher short-run fuel prices will lead some drivers to use less gasoline even if they drive the 
same number of miles. This is possible by driving slower, maintaining their vehicle better, or selecting the 
family compact car instead of the SUV for an errand.  

 
Static Model 

There are two common models used to estimate gasoline elasticities, a static model and a dynamic 
model (Lin and Prince, 2010). The static model examines gasoline demand (or vehicle traffic counts as a 
proxy) as a function of gas prices (P), income (Y), and other determinants of gasoline demand (X): 

 
D = f ( P, Y, X ) 

 
In our very-short run model we assume that Income and other variables are constant, so the static 

model collapses to a function of price alone. Since time is the variable of interest, lags are introduced to 
see how recent past prices influence gasoline use. 

Consider the following model, which uses vehicle traffic volume to measure drivers’ response to 
higher gasoline prices, where n represents a time lag in days: 

 
log VehCountt = b0 + b1 (log_GasPrice)t-n + b2 (Sat) + b3 (Sun) 
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Sat and Sun are dummy variables for Saturday and Sunday, and VehCount is the average daily vehicle 
traffic count, aggregated over all traffic sensors in the county. The double log model has been found in 
prior studies to be more appropriate than a linear model for gasoline demand (Espey 1998). The 
coefficient b1 thus represents the elasticity of vehicle volume with respect to gas price. 

Given that gasoline demand is price inelastic we expect b1 to be between 0 and -1. Prior studies have 
shown that demand is more inelastic in the short run than in the long run. Very short run elasticities can 
be estimated by varying n, the time lag in days, in this model. We find a negative coefficient in every 
case, but close to zero in the first few periods. The coefficient value increases in magnitude monotonically 
as the time lag increases. Thus the elasticity of vehicle travel becomes less inelastic over time, consistent 
with prior studies of the long run vs. short run. The p-value also decreases monotonically, and elasticity 
estimates starting with the 7-day lag begin to be significant at the 0.10 level.  

In the very short run the responsiveness of vehicle travel to higher gas prices is close to zero. Within 
ten days the elasticity approaches -0.30, consistent with prior estimates of the short run gasoline price 
elasticity. Results are shown in Table 5 and Figure 6. 

 
TABLE 5 

OLS, VARIOUS LAGS ON LOG (GASPRICE) 
DEPENDENT VARIABLE: LOG (VEHCOUNT) 

 

  
 

Lag 
(days) 

Coefficient Std. Error t-ratio p-value  

log_GasPrice 0 -0.02613 0.106195 -0.2460 0.80657  
log_GasPrice-1 1 -0.05542 0.107818 -0.5140 0.60936  
log_GasPrice-2 2 -0.07256 0.105708 -0.6864 0.49544  
log_GasPrice-3 3 -0.09970 0.106866 -0.9329 0.35517  
log_GasPrice-4 4 -0.12638 0.107916 -1.1711 0.24701  
log_GasPrice-5 5 -0.14806 0.108726 -1.3618 0.17937  
log_GasPrice-6 6 -0.15436 0.107233 -1.4395 0.15637  
log_GasPrice-7 7 -0.18473 0.107523 -1.7181 0.09223 * 
log_GasPrice-8 8 -0.21383 0.107463 -1.9898 0.05245 * 
log_GasPrice-9 9 -0.27138 0.100838 -2.6913 0.00989 *** 
log_GasPrice-10 10 -0.30108 0.100152 -3.0062 0.00432 *** 

 
(The coefficients for the dummy variables Sat and Sun are significant at the 0.01 level in each of these models.) 
* significant at the 10% level 
** significant at the 5% level 
*** significant at the 1% level 
 
 

Dynamic Model 
In a dynamic model, the impact of all prior time periods can be included in the estimate of the current 

elasticity. Consider a Koyck lag dynamic model, which includes a variable for the lagged dependent 
variable: 

 
log VehCountt = b0 + b1 (log_GasPrice)t-n + b2 (Sat) + b3 (Sun) + b4 (log VehCount)t-(n+1) 
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In this form the coefficient b1 is the static price elasticity and  b1/(1- b4)  is the dynamic elasticity 
which incorporates the effects of all prior periods. Assumed in this model is that the impact of prior 
periods decreases geometrically. 

 
FIGURE 6 

ELASTICITY OF TRAFFIC VOLUME VS. GAS PRICE OVER TIME 
 

 
 

TABLE 6 
DYNAMIC MODEL ELASTICITIES 

 
lag, n b1 p-value  b4 p-value 

 
b1/(1-b4)     

0 -0.01169 0.88972   0.22669 <0.00001 *** -0.01512 
1 -0.02607 0.78282   0.17399 0.00032 *** -0.03156 
2 -0.07249 0.50482   0.02326 0.62257  -0.07421 
3 -0.11086 0.29102  -0.11170 0.02162 ** -0.09972 
4 -0.15097 0.10285  -0.19910 0.00001 *** -0.12590 
5 -0.14479 0.18496  -0.10040 0.19220  -0.13158 
6 -0.13224 0.15439   0.28861 0.00003 *** -0.18589 
7 -0.15948 0.09138 *  0.19855 0.00005 *** -0.19898 
8 -0.21949 0.02760 **  0.14124 0.00689 *** -0.25559 
9 -0.27778 0.01002 **  0.00695 0.88735  -0.27972 

 
(The coefficients for the dummy variables Sat and Sun are significant at the 0.01 level in each of these models.) 
* significant at the 10% level 
** significant at the 5% level 
*** significant at the 1% level 
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Results are similar to the static model in that the estimated elasticities are near zero in the first few 
days after the price spike, gradually increasing in magnitude as consumers have time to adjust their 
driving behavior. Estimated coefficients for b1 and b4 from the dynamic model are reported in Table 6. 
The estimated dynamic elasticity  b1/(1- b4)  is still monotonic, changing from near zero in the first few 
days to about -0.28 after nine days. 
 
CONCLUSION 

 
In October 2012 a sudden gasoline price spike occurred in California. Southern California drivers 

responded by making fewer trips and by increasing their use of public transportation. An average gasoline 
price increase of 7.24% in October 2012 compared to September led to a 1.88% decrease in freeway 
vehicle traffic volume. These aggregate changes suggest a short-run price elasticity of -0.26, which is 
consistent with the short-run estimates of elasticity summarized by Espey (1996).  

The 7.24% average gasoline price increase was accompanied by an 8.96% increase in bus ridership, 
suggesting a cross-price elasticity of 1.24 for public transportation. Changes in both vehicle traffic counts 
and bus ridership were significant over this period. 

Driver response to higher gas prices was very small in the first few days after the price spike. This is 
to be expected since most drivers do not buy gasoline every day and the impact of a higher price may not 
be felt until their next stop at the pump. Price elasticities in the first few days after the spike were close to 
zero and not statistically significant. Over time the response increased and became significant by the 7th 
day after the price increase. By the end of 10 days the elasticity value approaches -0.30, consistent with 
prior short-run elasticity estimates. 
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