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This study employs fractional Brownian motion (fBM) in modeling the option pricing process and derives 
two approximation models for American put option valuations. We examine the accuracy of two 
approximated solutions, denoted by FMBAW and FMQuad, to the fractional Black-Sholes partial 
differential equation by following the approaches of MBAW and MQuad, respectively. We also 
empirically compare price errors using put options of petroleum industry - ConocoPhillips, Chevron 
Corporation, Exxon-Mobil - traded from January, 2005 to December, 2009. These models based on fBm 
are more accurate and reliable than the corresponding models.  
 
INTRODUCTION 

 
Until recently, option valuation studies conveniently assumed that all information is contained within 

the current asset price, and thus reasonably considered a Markovian process. However, long-term memory 
(time dependence) was exhibited by option traders consistently outperforming the market. This triggered 
many academic studies presuming the existence of a non-Markovian process and the development of 
stochastic volatility models with quasi long-range dependence (Lo and MacKinlay, 1999). Fractional 
Brownian motion (fBM) is used to deal with the non-Markovian process mitigating estimation problems 
of high-dimensional partial differential equations (PDE) with variable coefficients, while still assuming a 
Gaussian process. fBM offers simple and tractable solutions to financial option valuation and provides a 
practical way of modeling a non-Markovian price generating process.1 In a different vein, various studies 
recognize incentives for early exercise of American options and estimate these early exercise premiums. 
This incentive is more strongly pronounced for put options because of the timing of cash flows with early 
exercise. Macmillian (1986) and Barone-Adesi and Whaley (1987) (hereafter, MBAW) initially 
developed a quadratic approximation model for American put option valuation with early exercise 
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premium. Later Ju and Zhong (1999) (hereafter, MQuad) modified MBAW model and reported an 
improved result of American option valuation.2  However, both MBAW and MQuad models are based on 
Brownian motion, thus they cannot resolve problems with non-Markovian process. 

The present study employs fractional Brownian motion (fBM) in modeling the option pricing process 
and derives two approximation models for American put option valuations with non-Markovian process.  
This study contributes to the option valuation literature by introducing two non-Markovian valuation 
models with Gaussian valuation processes.  

Elliott and Van der Hoek (2003) derive a European pricing model called the fractional Black-Scholes 
(FBS) model by utilizing fractional Brownian motion. Heo et al. (2009) show that the FBS model 
improves the pricing error in European options as compared to the performance of the Black-Scholes (B-
S) model using NASDAQ (NDX) index call options. Meng and Wang (2010) claim in foreign exchange 
option markets that the FBS model performs better than the B-S model. Since the FBS model improves 
the pricing error in comparison to the B-S model, we adopt the fBM in an approximation of American put 
option price.  

Necula (2007) derives the fractional Black-Sholes PDE replacing the Black-Scholes equation, where 
the FBS model (2003) satisfies the fractional Black-Scholes PDE. Because American put option value is 
the sum of European put and early exercise premium, this fractional PDE offers an American option 
pricing model with moving boundary conditions as established by McKean (1965).3 Unfortunately the 
Necula’s fractional Black-Sholes PDE appears not to have an exact solution in estimation of American 
put early exercise premium. Heo et al. (2010) estimates American put option values with the FBS model 
replacing B-S to value European put options and to identify critical stock price to estimate the early 
exercise premium. Therefore, they are referred as a hybrid of two methods – MBAW and MQuad. In this 
study, our two valuation models provide approximations to the fractional Black-Sholes PDE by 
modifying the approaches of MBAW and MQuad. This study is different from Heo et al. (2010) because 
the new models estimate an early exercise premium on American put option from the fractional Black-
Scholes PDE. Because no previous study used the fractional PDE in evaluating American option models, 
findings from this study will have practical implications in risk hedging and financial engineering. 

We examine the accuracy of American put valuation models base on fractional Brownian motion 
using equity option data of petroleum industry – Conoco Phillips (COP), Chevron Corporation (CVX), 
Exxon Mobil (XOM) – traded on the Chicago Board of Trade Option Exchange (CBOE) from January 1, 
2005 to December 31, 2009. The accuracy is measured with mean absolute percentage error with respect 
to option price (MAPE), mean percent error with respect to option price (MPE) and root mean squared 
error (RMSE) by moneyness, volatilities, and option maturity.  

The remainder of this paper is organized as follows: Section II derives quadratic approximation 
American put option models using fractional Black Scholes PDE. In Section III, we describe the 
methodology and data screen process. Section IV discusses the empirical findings. The final section 
concludes and suggests for future research. 
 
MODELS 
 
Fractional Black-Scholes Partial Differential Equation 

Using the time variable 𝑡, 0 ≤ 𝑡 ≤ 𝑇, where 𝑡 = 0 corresponds to the issue date of the option and 
𝑡 = 𝑇 corresponds to its expiration date, we let 𝑆 = 𝑆(𝑡) = stock price at time 𝑡,  𝑋 = strike price of option 
𝑟 = current risk-free interest rate, 𝜎= stock price volatility, 𝜏 = (𝑇 − 𝑡) = time to expiration, and 𝛿 = 
current dividend yield (for dividend paying stocks). Then  European put option price, 𝑃𝐸(𝑆, 𝑡), is given by 
 

𝑃𝐸(𝑆, 𝑡) = 𝑋𝑒−𝑟𝜏𝑁(−𝑑2) − 𝑆𝑒−δ𝜏𝑁(−𝑑1),                     (1) 
 

where   𝑑1 =
ln�𝑆𝑋�+(𝑟−δ)𝜏+𝜎

2 

2 �𝑇
2𝐻−𝑡2𝐻�

𝜎�𝑇2𝐻−𝑡2𝐻
,  𝑑2 = 𝑑1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻 ,  and  𝑁(𝑥) = 1

√2𝜋
∫ 𝑒−𝑢2/2𝑑𝑢.𝑥
−∞  
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Let 𝑉(𝑆, 𝑡) be the price of an option on a stock where 𝑆 is the price of the stock at time 𝑡. Then 
𝑉(𝑆, 𝑡) satisfies the partial differential equation 

 

𝐻σ2 𝑡2𝐻−1𝑆2
𝜕2𝑉
𝜕𝑆2

+ (𝑟 − 𝛿)𝑆
𝜕𝑉
𝜕𝑆

 − 𝑟𝑉 +
𝜕𝑉
𝜕𝑡

= 0,                                                                              (2) 
 
which is called the fractional Black-Scholes PDE (Necula, 2007). The classical Black-Scholes PDE is the 
special case of the above equation if  𝐻 = 1/2.  
 
Quadratic Approximation Solutions to Fractional Black-Scholes PED 

In this section, we derive two quadratic approximation formulas, FMBAW and FMQuad, by 
following the approaches of MBAW and MQuad, respectively, using the fractional Black-Scholes 
differential equation. 
 
FMBAW Method 

If an American put option price satisfies 𝑃 = 𝑃𝐸 + 𝜌  where 𝜌 is the early exercise premium and 𝑃𝐸  
is the European put value, we have the following boundary conditions in term of 𝜌: 𝜌(𝑆,𝑇) = 0 and 
 lim
𝑆→∞

𝜌(𝑆, 𝑡) = 0.  At the critical stock price 𝑆∗, we have two moving boundary conditions 
 

 lim
𝑆→𝑆∗

𝜌(𝑆, 𝑡) = 𝑋 −𝑆∗ −  𝑃𝐸(𝑆, 𝑡),                                                                                                             (3) 
 

lim
𝑆→𝑆∗

𝜕𝜌(𝑆, 𝑡)
𝜕𝑆

=  −1 −  
𝜕 𝑃𝐸(𝑆∗, 𝑡)

𝜕𝑆
 .                                                                                                         (4) 

 
For values of 𝑆 > 𝑆∗, the early exercise premium 𝜌 satisfies the fractional Black-Scholes differential 
equation 
 

𝐻σ2 𝑡2𝐻−1𝑆2
𝜕2𝜌
𝜕𝑆2

+ (𝑟 − 𝛿)𝑆
𝜕𝜌
𝜕𝑆

 − 𝑟𝜌 +
𝜕𝜌
𝜕𝑡

= 0.                                                                               (5) 
 

The exact solution to (5) is unknown so an approximation solution to the equation can derived by 
following the same approach of MacMillan (1986), Barone-Adesi, and Whaley (1987) (MBAW) 
For simplicity, we let 𝜏 = (𝑇 − 𝑡),  𝑀1 = 𝑟 σ2⁄ ,  𝑀2 = (𝑟 − 𝛿) σ2⁄ ,  and  𝐿(𝜏) = 𝐻 (𝑇 − 𝜏)2𝐻−1 . Then, 
equation (5) becomes 
 

𝐿(𝜏) 𝑆2
𝜕2𝜌
𝜕𝑆2

+ 𝑀2𝑆
𝜕𝜌
𝜕𝑆

 −𝑀1𝜌 −
𝑀1

𝑟
𝜕𝜌
𝜕𝜏

= 0.                                                                                         (6) 
 

As in the MBAW method, let’s assume that 𝜌 = 𝐾(𝜏)Ψ(𝑆,𝐾). Then Ψ(𝑆,𝐾) satisfies 
 

𝐿(𝜏)𝐾(𝜏)𝑆2
𝜕2Ψ
𝜕𝑆2

+ 𝑀2𝐾(𝜏)𝑆
𝜕Ψ
𝜕𝑆

−𝑀1𝐾(𝜏)Ψ−
𝑀1

𝑟
�
𝑑𝐾
𝑑𝜏

Ψ + 𝐾(𝜏)
𝑑𝐾
𝑑𝜏

⋅
𝜕Ψ
𝜕𝐾

� = 0.                     (7) 
 

By combining the last two terms in (7) and assuming  𝑑𝐾
𝑑𝜏

= 𝑟�1 − 𝐾(𝜏)�, thus 𝐾(𝜏) = 1 − 𝑒−𝑟𝜏, and  
equation (7) becomes 
 

𝐿(𝜏)𝑆2
𝜕2Ψ
𝜕𝑆2

+ 𝑀2𝑆
𝜕Ψ
𝜕𝑆

−
𝑀1

𝐾(𝜏)Ψ�1 +  �1 − 𝐾(𝜏)�
𝐾(𝜏)
Ψ

⋅
𝜕Ψ
𝜕𝐾

� = 0.                                              (8) 
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Further simplification leads to 
 

𝐿 𝑆2
𝜕2Ψ
𝜕𝑆2

+ 𝑀2𝑆
𝜕Ψ
𝜕𝑆

−
𝑀1

𝐾
Ψ − (1 − 𝐾)𝑀1

𝜕Ψ
𝜕𝐾

= 0.                                                                            (9) 
 
As 𝜏 → 0 or 𝜏 → ∞, the last term (1 − 𝐾)𝑀1

𝜕Ψ
𝜕𝐾

 → 0.  Hence it is reasonable to assume the last term in 
(9) is zero. Let 𝛼 = 𝑀1/𝐿 and 𝛽 = 𝑀2/𝐿. Then we obtain 
 

 𝑆2
𝜕2Ψ
𝜕𝑆2

+ 𝛽𝑆
𝜕Ψ
𝜕𝑆

−
𝛼
𝐾
Ψ = 0.                                                                                                                  (10) 

 
The solution to (10) provides the approximation to the fractional Black-Scholes PDE (5). Because 

equation (10) is a second-order ordinary differential equation, it has two linearly independent solutions of 
the formΨ = 𝑎 𝑆𝜆, where is 𝜆 is the solution of the equation 𝑎 𝑆𝜆 �𝜆2 + (𝛽 − 1)𝜆 − 𝛼

𝐾
� = 0. 

Hence,  
 

𝜆 =
(1 − 𝛽)  ± �(1 − 𝛽)2 + 4𝛼/𝐾

2
.                                                                                                      (11) 

 
Let 
 

𝜆1 = (1−𝛽)−�(1−𝛽)2+4𝛼/𝐾 
2

, and  𝜆2 = (1−𝛽)+�(1−𝛽)2+4𝛼/𝐾
2

 .                                                        (12) 
 
Then Ψ = 𝑎1 𝑆𝜆1 + 𝑎2 𝑆𝜆2 . Since 𝜆2 > 0, as 𝑆 → ∞,Ψ → ∞. Therefore 𝑎2  should be zero. Otherwise, 
the early exercise premium 𝜌 approaches infinity. Hence Ψ = 𝑎1 𝑆𝜆1  and 
 

𝑃(𝑆, 𝑡) = 𝑃𝐸(𝑆, 𝑡) + 𝐾 𝑎1𝑆𝜆1 .                      (13) 
 

The values of 𝑎1 and the critical stock price 𝑆∗are determined by imposing the boundary conditions 
(3) and (4). From boundary condition (4) and the continuity of the derivative, we have 
 

−1 = 𝜕 𝑃𝐸(𝑆∗,𝑡)
𝜕𝑆

+ 𝜆1𝐾𝑎1𝑆∗
𝜆1−1.                     (14) 

 
As a result of the continuity of option price at boundary condition (3),   
 

𝑋 − 𝑆∗ = 𝑃𝐸(𝑆∗, 𝑡) + 𝐾 𝑎1𝑆∗
𝜆1 .                                                                     (15) 

 

Because 𝜕 𝑃𝐸(𝑆∗,𝑡)
𝜕𝑆

= −𝑒−𝛿𝜏𝑁(−𝑑1(𝑆∗)), then  𝑎1 = −1+𝑒−𝛿𝜏𝑁(−𝑑1(𝑆∗))
𝜆1𝐾𝑆∗𝜆1−1

 , which substituted into (15), we 

obtain the critical stock price 𝑆∗ by solving  
 

𝑋 − 𝑆∗ = 𝑃𝐸(𝑆∗, 𝑡) −
1
𝜆1
�1 − 𝑒−𝛿𝜏𝑁�−𝑑1(𝑆∗)��𝑆∗ .                                                                         (16) 

 
The solution for the American put option price is then easily obtained as follows. 
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𝑃(𝑆, 𝑡) = � 𝑃𝐸(𝑆, 𝑡) + 𝐾𝐴(𝐾) �
𝑆
𝑆∗
�
𝜆(𝐾)

    𝑖𝑓 𝑆 > 𝑆∗

   𝑋 − 𝑆                                              𝑖𝑓  𝑆 ≤ 𝑆∗ ,
�                                                                   (17) 

 

where 𝐴 = −�𝑆
∗

𝜆𝐾
� �1 − 𝑒−𝛿𝜏𝑁�−𝑑1(𝑆∗)��   and   𝜆(= 𝜆1) = (1−𝛽)−�(1−𝛽)2+4𝛼/𝐾

2
. 

 
We note here that the put price value formula 𝑃(𝑆, 𝑡) in (17) is exactly the same as the price formula 

in Barone-Adesi, and Whaley (1987) (MBAW) when 𝐻 = 1
2

, 𝑀 = 𝛼, and 𝑁 = 𝛽. 
 
FMQuad Method 

Ju and Zhong (1999) modified the assumptions of MBAW by assuming 𝜌 is of the form 
𝐾(𝜏)�Ψ1(𝑆,𝐾) + Ψ2(𝑆,𝐾)�, where Ψ1 is the same Ψ above in the MBAW method, and Ψ2 represents an 
additional correction term. Since the MBAW method captures most of the early exercise premium, Ψ2 is 
relatively small so that it is assumed that Ψ2 = εΨ1with a small ε. Then equation (9) becomes 

 

 𝑆2
𝜕2Ψ1
𝜕𝑆2

+ 𝛽𝑆
𝜕Ψ1
𝜕𝑆

−
𝛼Ψ1
𝐾

+  𝑆2
𝜕2 εΨ1
𝜕𝑆2

+ 𝛽𝑆
𝜕εΨ1
𝜕𝑆

−
𝛼εΨ1
𝐾

− (1 − 𝐾)𝑀1
𝜕(Ψ1 + εΨ2)

𝜕𝐾
= 0              (18) 

 
With  Ψ1 = 𝐴(𝑆/𝑆∗)𝜆 satisfying equation (10), the first three terms in (18) are zero. Hence equation (18) 
simplifies to 
 

 𝑆2
𝜕2 εΨ1
𝜕𝑆2

+ 𝛽𝑆
𝜕εΨ1
𝜕𝑆

−
𝛼εΨ1
𝐾

− (1 − 𝐾)𝑀1
𝜕(Ψ1 + εΨ2)

𝜕𝐾
= 0.                                                    (19) 

 
Since  𝜕εΨ1

𝜕𝑆
=  𝜕ε

𝜕𝑆
 Ψ1 +  ε 𝜕Ψ1

𝜕𝑆
  and  𝜕

2 εΨ1
𝜕𝑆2

=  𝜕
2 ε
𝜕𝑆2

 Ψ1 + 2 𝜕ε
𝜕𝑆

𝜕Ψ1
𝜕𝑆

+  ε 𝜕
2 Ψ1
𝜕𝑆2

,  dividing (19) by Ψ1, we 
obtain 
 

 𝑆2
𝜕2 ε
𝜕𝑆2

+ �
2𝑆2

Ψ1
𝜕Ψ1
𝜕𝑆

+ 𝛽𝑆�
𝜕ε
𝜕𝑆

− (1 − 𝐾)𝛼 �
1 + 𝜀
Ψ1

𝜕Ψ1
𝜕𝐾

+
𝜕ε
𝜕𝐾

 � = 0.                                            (20) 

 
As in Ju and Zhong, we assume that 𝜕ε

𝜕𝐾
= 0. From Ψ1 = 𝐴(𝐾)(𝑆/𝑆∗)𝜆,  𝜕Ψ1

𝜕𝑆
= Ψ1

𝜆
𝑆
   and  𝜕Ψ1

𝜕𝐾
=

Ψ1 �
𝐴′(𝐾)
𝐴(𝐾)

+  𝜆′ log � 𝑆
𝑆∗
� − 𝜆

𝑆∗
𝜕𝑆∗

𝜕𝐾
�. Hence from (20), we have 

 

 𝑆2
𝜕2 ε
𝜕𝑆2

+ (2𝜆 + 𝛽)𝑆
𝜕ε
𝜕𝑆

− (1 − 𝐾)𝛼(1 + ε) �
𝐴′(𝐾)
𝐴(𝐾)

+  𝜆′ log �
𝑆
𝑆∗
� −

𝜆
𝑆∗
𝜕𝑆∗

𝜕𝐾
 � = 0.                (21) 

 
To solve the second order ODE (21),  (1 + ε) is treated as a constant. Then the solution to equation (21) 

can be written as ε = 𝑦𝑝 + 𝑦ℎ, where  𝑦ℎ = 𝑐1
𝑆−(2𝜆+𝛽−1)

2𝜆+𝛽−1
+ 𝑐2 and  𝑦𝑝 = 𝐵(𝐾)𝑌2 + 𝐶(𝐾)𝑌, where 

𝑌 = log � 𝑆
𝑆∗
�. Because 2𝜆 + 𝛽 − 1 is negative, 𝑦ℎ approaches ∞ as 𝑆 approaches ∞. Therefore, 𝑐1 and 𝑐2 

must be zero. Hence ε takes the form 𝐵(𝐾)𝑌2 + 𝐶(𝐾), where 𝐵(𝐾) = (1−𝐾)𝜆′(𝐾)𝛼(1+ε)
2(2𝜆+𝛽−1)

 and  Hence ε 

takes the form 𝐵(𝐾)𝑌2 + 𝐶(𝐾), where 𝐵(𝐾) = (1−𝐾)𝜆′(𝐾)𝛼(1+ε)
2(2𝜆+𝛽−1)

 and  𝐶(𝐾) = (1−𝐾)𝛼(1+ε)
(2𝜆+𝛽−1)

�𝐴
′(𝐾)
𝐴(𝐾)

−
𝜆′(𝐾)

(2𝜆+𝛽−1)
 − 𝜆

𝑆∗
𝜕𝑆∗

𝜕𝐾
 �, where  𝜆′(𝐾) = 𝛼

𝐾2�(1−𝛽)2+4𝛼𝐾  
 . 
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Let  𝑏 = (1−𝐾)𝜆′(𝐾)𝛼
2(2𝜆+𝛽−1)

,  and  𝑐 = (1−𝐾)𝛼
(2𝜆+𝛽−1)

�𝐴
′(𝐾)
𝐴(𝐾)

− 𝜆′(𝐾)
(2𝜆+𝛽−1)

 – 𝜆
𝑆∗

𝜕𝑆∗

𝜕𝐾
 �. Then from boundary condition  

 
(3), as  𝑆 approaches 𝑆∗, we obtain 𝑋 − 𝑆∗ = 𝑃𝐸(𝑆∗, 𝑡) + 𝐾𝐴(𝐾). By differentiating with respect to 𝐾,  
 

𝐴′(𝐾) = − 1
𝐾
��1 − 𝑒−𝛿𝜏𝑁�−𝑑1(𝑆∗)�� 𝜕𝑆

∗

𝜕𝐾
+ 𝜕𝑃𝐸(𝑆∗,𝜏)

𝜕𝐾
+ 𝐴(𝐾)�.                      (22) 

 
Hence, 
 

𝑐 =
−(1−𝐾)𝛼

(2𝜆+𝛽−1)
��1−𝑒

−𝛿𝜏𝑁�−𝑑1(𝑆∗)�
𝐾𝐴(𝐾) − 𝜆(𝐾)

𝑆∗
� 𝜕𝑆

∗

𝜕𝐾
+ � 1

𝐾𝐴(𝐾)
𝜕𝑃𝐸(𝑆∗,𝜏)

𝜕𝐾
+ 1

𝐾
+ 𝜆′(𝐾)

2𝜆+𝛽−1
� � ,                                (23)  

 
where  𝜕𝑃𝐸(𝑆∗,𝜏)

𝜕𝐾
= 𝜕𝑃𝐸(𝑆∗,𝜏)

𝜕𝜏
 𝜕𝜏
𝜕𝐾

= −𝑋𝑁(−𝑑2) + 𝑆∗𝛿
𝑟
𝑒(𝑟−𝛿)𝜏𝑁(−𝑑1) + 𝑋

𝑟
𝜕𝑁(−𝑑2)

𝜕𝜏
− 𝑠

𝑟
𝑒(𝑟−𝛿)𝜏 𝜕𝑁(−𝑑1)

𝜕𝜏
 . 

 
As in MBAW method, the critical stock price 𝑆∗ is recovered from the equation 
 

𝑋 − 𝑆∗ = 𝑃𝐸(𝑆∗, 𝑡) − 1
𝜆
�1 − 𝑒−𝛿𝜏𝑁�−𝑑1(𝑆∗)��𝑆∗,                                  (24) 

 
which causes the term involving 𝜕𝑆

∗

𝜕𝐾
 in (23) to equal zero.  As a result,  

 
𝑐 = − (1−𝐾)𝛼

(2𝜆+𝛽−1)
� 1
𝐾𝐴(𝐾)

𝜕𝑃𝐸(𝑆∗,𝜏)
𝜕𝐾

+ 1
𝐾

+ 𝜆′(𝐾)
2𝜆+𝛽−1

 �.                        (25) 
 
Then the price of an American option is approximated by  
 

𝑃(𝑆, 𝑡) = � 𝑃𝐸(𝑆, 𝑡) +
𝐾𝐴(𝐾)(𝑆/𝑆∗)𝜆(𝐾)

1 − 𝜒
         𝑖𝑓   𝑆 > 𝑆∗

 𝑋 − 𝑆                                                    𝑖𝑓  𝑆 ≤ 𝑆∗,
�                                                               (26) 

 

where 𝜒 = 𝑏 �log � 𝑆
𝑆∗
��
2

+ 𝑐 log � 𝑆
𝑆∗
�.  

 
The option pricing formulas (17) and (26) resemble the formulas given by  Barone-Adesi, and 

Whaley (1987) and Ju and Zhong (1999), respectively. However, the coefficients 𝛼 and 𝛽 involve the 
term 𝐿(𝑡) = 𝐻⋅ 𝑡2𝐻−1 so that the critical stock prices and early exercise premium are very sensitive to 𝐻 
values which separate the Black-Scholes PDE and fractional Black-Scholes PDE unless 𝐻 = 1/2. 
 
DATA AND METHODOLOGY 
 

This study uses daily market closing prices traded on the Chicago Board of Option Exchange (CBOE) 
for put options of three petroleum companies: ConocoPhillips (COP), Chevron Corporation (CVX), and 
Exxon Mobil (XOM). The data spans the time period from January 1, 2005 to December 31, 2009. These 
put options differ in exercise price and expiration date. As a result, there are 1,083 COP, 758 CVX, and 
873 XOM equity put options.  

It is necessary to filter the data for a variety of reasons. First, American put option prices must satisfy 
the no-arbitrage boundary conditions, given as: 
 

𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑆 + 𝑋𝑒−𝑟𝑇  ≤  𝑃𝑚𝑜𝑑𝑒𝑙  ≤  𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑆 + 𝑋  and   𝑃𝑎𝑐𝑡𝑢𝑎𝑙 ≤ 0.99(𝑋 − 𝑆).       (27) 
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Any observation failing these conditions was deleted. Observations with put option prices less than 
$0.50 were also deleted to eliminate outliers and prohibitively high transaction costs. Thinly traded put 
options were also deleted. Some input variables such H value and implied volatility were recovered from 
the previous day’s data, thus the first observation of each put option was lost. The last filter required 
deleting options whose H values are not in the range of 0 to 1. The final dataset consists of 74,833 usable 
observations (26,330 for COP, 20,748 for CVX and 27,755 for XOM).  

Standard option definitions based on different moneyness apply. Namely, given the different ranges 
for moneyness (S/X), different options are defined to be: 

 
Deep-in-the-money (DITM) S/X < 0.95 

In-the-money (ITM) 0.95 < S/X <0.98 
At-the-money (ATM) 0.98 < S/X <1.02 

Out-of-the-money (OTM) 1.02 < S/X < 1.05 
Deep-out-of-the-money (DOTM) 1.05< S/X. 

 
 
The option maturity is divided into four periods at three month intervals. The first, M1 is defined as a 
maturity of less than three months, M2 between three and six months, M3 between six months and nine 
months, and lastly, M4 is a maturity longer than nine months. 

The study employs three measures to evaluate the accuracy with respect to option price of each 
model. These are mean absolute percentage error (MAPE), mean percentage error (MPE), and root mean 
squared error (RMSE), given by the following equations respectively, 
 
1) 𝑀𝐴𝑃𝐸 = 1

𝑁
∑ |𝑃𝑚𝑜𝑑𝑒𝑙−𝑃𝑎𝑐𝑡𝑢𝑎𝑙|

𝑃𝑎𝑐𝑡𝑢𝑎𝑙
 × 100(%) 

 
2)  𝑀𝑃𝐸 = 1

𝑁
∑ 𝑃𝑚𝑜𝑑𝑒𝑙−𝑃𝑎𝑐𝑡𝑢𝑎𝑙

𝑃𝑎𝑐𝑡𝑢𝑎𝑙
 × 100(%)   

 

3) 𝑅𝑀𝑆𝐸 = �1
𝑁
∑(𝑃𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙)2  , 

 
where 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 is the actual put option price; and 𝑃𝑚𝑜𝑑𝑒𝑙  is the model-generated price; and N is the number 
of observations.  

This study utilizes two common volatility measures, implied (IV) and historical volatility (HV). The 
implied volatility measures are recovered from the binomial tree model with 100 steps and historical 
volatility values are measured by historical standard deviation of log returns for the previous three 
months. We recover the Hurst values (H) from the FBS model which depends on the two volatility 
measures, IV and HV.  
 
EMPIRICAL RESULTS  
 
 This study’s accuracy tests results are reported in the following tables. In Table 1, the summary of 
MAPE, RMSE, and MPE by volatilities are presented. These three accuracy measures, sorted by option 
maturity and moneyness, are reported in Table 2 and Table 3, respectively. Each table is separated 
horizontally by two categories, one for implied volatility (IV) and the other for historical volatility (HV), 
and vertically by Group 1 (B-S, MBAW, MQuad - non-fractional models) and Group2 (FBS, FMBAW, 
FMQuad – fractional models). Because models using implied volatility yielded better accuracy than using 
historical volatility, we present MAPE with IV across two dimension, maturity and moneyness in Table 4. 
The results for RMSE and MPE with IV across maturity and moneyness are included in Appendix. We 
can conclude from Table 1 that all models using implied volatility (IV) yield more accurate estimations 
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(MAPE, MPE) and less variance (RMSE) than using historical volatility (HV) for all model specifications 
consistent with the literature. From Heo et al. (2009), it is expected that the models in Group 2 should 
perform better than those in Group 1 in estimating option prices because the FBS model improves 
European option price errors, and also, the Hurst parameter H better captures fluctuations of the market 
than does Brownian motion. Indeed, as expected all models in Group 2 outperform the corresponding 
models in Group 1.4 In particular FMQuad outperforms the other models except for the case of MPE with 
HV where FMBAW is more accurate. We noticed that American option models outperform the 
corresponding European option models as we expected. The European FBS option price model yields 
surprisingly less MAPE and MPE than the American option models in Group 1. The improvement in 
accuracy between the two groups is more dramatic where HV is concerned. MBAW performs best in 
Group 1 and FMQuad performs best in Group 2 excepting the MPE case. This finding contradicts, when 
MBAW and MQuad are compared, the claim by Ju and Zhang (1999), where they use only 87 simulation 
data entries.  
 

TABLE 1 
 MAPE, RMSE, AND MPE BY VOLATILITIES 

 

  Group 1 Group 2 
Volatility Measure B-S MBAW MQuad FBS FMBAW FMQuad 
IV MAPE 11.1454 5.8778 6.3777 4.5603 4.5369 4.1204 
 RMSE 1.3944 0.524 0.5291 0.6576 0.5032 0.4445 
 MPE -11.06 -5.6841 -6.2055 -3.506 0.8913 0.3379 
HV MAPE 21.3525 16.85 17.1846 7.8045 7.4747 7.0984 

 
RMSE 1.7083 0.9955 1.0055 0.7238 0.5467 0.4964 

 
MPE -20.472 -15.473 -15.858 -6.7794 -2.8421 -3.3207 

 
 
 As we notice in Table 1, the differences in MAPE and RMSE among the European FBS model and 
the American models in Group 2 are insignificant. We scrutinize the pricing errors by option maturity 
(Table 2) and moneyness (Table 3). Their differences between models start to reveal more clearly. If the 
option maturity is considered, all models in Group 2 outperform the corresponding models in Group 1. 
Thus we will focus our discussion more to models in Group 2.  
 American option models in Group 2 generate more accurate option prices except FBS in 𝑀4 case. 
Particularly, when the maturity is less than 10 months (𝑀1, 𝑀2,𝑀3), we find that, regardless of 
volatilities, FMBAW is more accurate than other models if MAPE is considered and FMQuad yields less 
error than others if RMSE is considered. This pattern is very similar between MBAW and MQuad.   
 This result is similar to the result in Heo et al. (2010) which used the hybrid models of MBAW and 
MQuad studying financial option prices. MPE results suggest that all models underestimate option prices 
except with 𝑀4 cases for FMBAW and FMQuad. We observe the same phenomenon when HV is 
considered. It is known that the shorter the maturity, the better the accuracy. This is the case except for 
FBS. If the maturity is longer than 9 months (𝑀4), FBS significantly outperforms the other models in all 
three measures, which is surprising because it is a European option model.6 The FBS (𝑀4) result is the 
best among all the maturity periods. This can be partially explained if we exam the MPE in Table 2, 
where FBS with IV underestimates the actual option price by 0.2294%, where as FMBAW and FMQuad 
overestimate the option price by 6.0555% and 4.3107%, respectively. Because FBS estimation is already 
within 0.2294% of the actual price, adding the early exercise premium contributes even bigger 
approximation error to FMBAW and FMQuad unless the American option models capture early exercise 
premium exactly.  
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TABLE 2 
MAPE, RMSE, AND MPE BY MATURITY5 

 

   
Group 1 Group 2 

Measure Volatility Maturity B-S MBAW MQuad FBS FMBAW FMQuad 
MAPE IV 𝑴𝟏 3.4032 2.0839 2.0812 2.585 1.6456 1.6605 
    𝑴𝟐 7.9084 4.4457 4.5417 6.5667 3.7335 3.8449 
    𝑴𝟑 10.5981 6.1434 6.4692 8.8018 4.8567 5.3999 
    𝑴𝟒 17.9027 8.8269 9.9639 2.2483 6.5322 5.0553 
  HV 𝑴𝟏 4.6198 3.3926 3.4021 3.2989 2.3317 2.3684 
    𝑴𝟐 14.9307 11.7149 11.8242 12.2251 9.4958 9.624 
    𝑴𝟑 23.3845 19.3535 19.6201 18.2137 14.134 14.1524 
    𝑴𝟒 34.0164 26.5956 27.2966 2.2827 5.7442 4.606 
RMSE IV 𝑴𝟏 0.4815 0.256 0.2532 0.4556 0.2449 0.2441 
    𝑴𝟐 0.8945 0.3371 0.3245 0.8553 0.3204 0.3156 
    𝑴𝟑 1.0361 0.3995 0.385 0.9783 0.348 0.3358 
    𝑴𝟒 2.0227 0.7452 0.7628 0.3182 0.7254 0.6177 
  HV 𝑴𝟏 0.4963 0.2724 0.2706 0.4685 0.2539 0.2536 
    𝑴𝟐 0.968 0.4411 0.434 0.923 0.4104 0.4086 
    𝑴𝟑 1.2077 0.6463 0.6398 1.1196 0.5529 0.5343 
    𝑴𝟒 2.5397 1.5221 1.5427 0.3436 0.7172 0.6185 
MPE IV 𝑴𝟏 -3.1322 -1.5944 -1.5659 -1.9062 -0.4791 -0.4449 
    𝑴𝟐 -7.846 -4.272 -4.3965 -6.1305 -2.7697 -2.907 
    𝑴𝟑 -10.555 -6.0303 -6.3864 -8.4458 -3.0861 -2.4312 
    𝑴𝟒 -17.885 -8.7451 -9.9205 -0.2294 6.0555 4.3107 
  HV 𝑴𝟏 -3.8166 -2.2782 -2.2494 -2.7078 -1.2678 -1.2324 
    𝑴𝟐 -14.49 -10.988 -11.083 -11.884 -8.5662 -8.6761 
    𝑴𝟑 -22.913 -18.591 -18.862 -17.836 -12.758 -12.339 
    𝑴𝟒 -32.597 -24.335 -25.202 -0.2402 4.9529 3.506 
𝑀1 (Less than 3 months), 𝑀2 (between 3 and 6 months), 𝑀3(between 6 and 9 months), 𝑀4(greater than 9 months) 

 
 

FIGURE 1 
OPTION PRICE INFLUENCED BY MATURITY 

 

 
 

In Figure 1, we present the changes of option prices of B-S, FBS, FMBAW and FMQuad assuming 
that all models have the same parameter values7 over  two year maturity (𝑇 − 𝑡)  periods. As the time to 
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maturity gets larger, so does the option price, which is expected due to the time value. However, the rates 
of the increase of FMBAW and FMQuad are greater than those of FBS and B-S. Our empirical study 
shows that the increase is significant when the time to maturity is 9 month and beyond, regardless of the 
volatilities and moneyness (Table 4). Structural bias of FMBAW and FMQuad is inevitable the longer the 
maturity as demonstrated in Figure 1. 
 Table 3 compares pricing errors by moneyness. When IV with MAPE is considered, FMQaud 
performs best for DITM and ITM cases and FBS outperforms for the other cases. When IV with RMSE is 
considered, FBS outperforms the other models except in the DITM case where FMQuad performs best. 
However, the differences between FBS and FMQuad are negligible (0.4111 vs. 0.4117) in ITM case with 
RMSE. Hence it is safe to say that FMQuad is effective in DITM and ITM cases and FBS is reliable in 
ATM, OTM and DOTM cases. Because the number of observations in DITM is more than a half of the 
data set, FMQad is reported as the best model in Table 1. For HV, using MAPE and RMSE measures, 
 

TABLE 3 
MAPE, RMSE, AND MPE BY MONEYNESS8 

 

   Group 1 Group 2 
Measure Volatility Moneyness B-S MBAW MQuad FBS FMBAW FMQuad 
MAPE IV DITM 8.1843 2.8509 2.7459 3.9317 2.8279 2.5466 
    ITM 11.5961 6.5913 6.6848 4.8472 5.0241 4.6414 
    ATM 12.0728 7.3278 7.6119 4.7157 5.4128 5.0848 
    OTM 12.9184 8.332 8.8239 5.195 5.7932 5.4749 
    DOTM 15.6187 10.2283 11.8476 5.4522 6.9867 6.3083 
  HV DITM 8.6514 3.5122 3.4263 3.9969 2.938 2.6835 
    ITM 14.2087 9.7952 9.8585 5.2991 5.5988 5.1909 
    ATM 16.2246 12.2224 12.4206 5.696 6.3941 5.9844 
    OTM 19.763 15.872 16.2515 7.45 7.7996 7.3226 
    DOTM 44.9462 41.3185 42.4204 15.0258 15.5319 14.9765 
RMSE IV DITM 1.7869 0.5962 0.5816 0.8751 0.6314 0.5579 
    ITM 1.1274 0.6133 0.6345 0.4111 0.4595 0.4117 
    ATM 0.9721 0.5458 0.5759 0.3045 0.3985 0.3512 
    OTM 0.881 0.5235 0.5606 0.2792 0.3526 0.3129 
    DOTM 0.5535 0.3446 0.3855 0.1677 0.2266 0.1979 
  HV DITM 1.9602 0.86 0.8476 0.9275 0.6579 0.5893 
    ITM 1.6112 1.1308 1.1469 0.4949 0.4978 0.4548 
    ATM 1.5183 1.1363 1.1592 0.4137 0.4442 0.4059 
    OTM 1.5005 1.1788 1.209 0.4194 0.423 0.393 
    DOTM 1.2758 1.1206 1.1528 0.3438 0.3437 0.334 
MPE IV DITM -8.1719 -2.7752 -2.658 -3.5753 0.3967 0.305 
    ITM -11.494 -6.3691 -6.4266 -3.9231 0.2572 0.159 
    ATM -11.804 -6.8998 -7.1749 -3.3817 0.7414 0.4604 
    OTM -12.646 -7.9527 -8.46 -3.7838 0.3211 -0.0493 
    DOTM -15.475 -9.9111 -11.624 -3.3098 1.9262 0.4509 
  HV DITM -8.5632 -3.0955 -2.9752 -3.6288 0.3637 0.2669 
    ITM -13.415 -8.2659 -8.3012 -4.2767 -0.2796 -0.4023 
    ATM -14.508 -9.635 -9.8837 -4.2673 -0.3669 -0.6561 
    OTM -18.052 -13.482 -13.956 -6.0151 -2.2838 -2.6655 
    DOTM -42.995 -38.723 -40.025 -13.032 -9.1613 -10.385 
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FMQuad dominates with regards to accuracy, except for in the ATM case, where the FBS model 
yields less error as measured using MAPE. Among models in Group 1, MQuad only outperforms the 
other two models in the DITM case. MBAW yields smaller errors in all other cases, which is quite 
different from the results in Group 2 where FMBAW pricing errors lie between FBS and FMQuad pricing 
errors. From MPE, we notice that all models with IV in Group 1 as well as FBS model underestimate 
actual option prices and FMBAW and FMQuad overestimate actual option prices except OTM case. 
Considering HV, all models underestimate in call cases with the exception of FMBAW and FMQuad in 
the DITM case. Regardless of volatilities, all models perform best in the order of DITM, ITM, ATM, 
OTM, and DOTM when MAPE is considered, but the order is reversed if RMSE is considered. This 
result is consistent with the finding in Heo et al. (2010). One of the reasons is that the actual mean option 
values for DITM, ITM, ATM,  OTM, and DOTM are $19.11, $6.92, $5.52, $4.61, and $2.45, 
respectively, so that even if RMSE of the DOTM options is smaller than that of the DITM options, the 
percentage error is much greater. We also notice that FBS yields almost the same MPE in the IV case, 
regardless of the moneyness. As we have seen before, all models in Group 2 outperform the 
corresponding models in Group 1. The improvement in the OTM and DOTM cases is significant. Usually 
models with IV outperform HV but models in Group 2 yield similar results in the DITM and ITM cases.  

 
TABLE 4 

MAPE WITH IV BY MATURITY AND MONEYNESS 
 

   
Group 1 Group 2 

Maturity Moneyness N* B-S MBAW MQuad FBS FMBAW FMQuad 
𝑴𝟏 DITM 12400 2.5696 1.1697 1.1433 2.271 1.1142 1.121 
 ITM 660 4.5891 3.4737 3.4094 2.8753 2.7755 2.8931 
 ATM 860 5.7338 4.9127 4.9183 3.4234 3.4511 3.5373 
 OTM 515 7.7734 6.9318 7.0299 4.16 4.2797 4.2825 
 DOTM 852 9.6229 8.5281 8.8476 5.1317 5.0905 5.0781 
 ALL 15287 3.4032 2.0839 2.0812 2.585 1.6456 1.6605 
𝑴𝟐 DITM 10980 6.4059 2.2237 2.0684 5.8207 2.0778 2.0214 
 ITM 994 8.6586 5.6622 5.5273 6.9693 4.6226 4.6861 
 ATM 1136 9.059 6.2727 6.3401 7.0786 5.0549 5.279 
 OTM 870 9.6336 7.0935 7.3688 7.2112 5.6604 5.9905 
 DOTM 4726 10.6471 8.4256 9.1278 7.9737 6.7209 7.1646 
 ALL 18706 7.9084 4.4457 4.5417 6.5667 3.7335 3.8449 
𝑴𝟑 DITM 6165 8.8158 3.114 2.9076 7.9693 2.6569 2.3995 
 ITM 747 10.8326 6.7323 6.7009 9.2506 5.3171 5.0555 
 ATM 809 11.1031 7.3165 7.49 9.1776 5.7301 6.0146 
 OTM 615 11.6594 8.1323 8.5214 9.8653 6.2024 6.6224 
 DOTM 4952 12.5673 9.3872 10.4466 9.577 7.2162 8.935 
 ALL 13288 10.5981 6.1434 6.4692 8.8018 4.8567 5.3999 
𝑴𝟒 DITM 10155 16.5799 5.4223 5.3374 1.4661 5.8355 4.9447 
 ITM 1327 17.7113 8.7585 9.1718 1.7597 6.2784 5.2442 
 ATM 1670 17.857 9.2948 9.9232 1.6125 6.5126 5.2992 
 OTM 1239 17.9885 9.8829 10.7416 1.8914 6.3125 5.0389 
 DOTM 13161 18.9403 11.3021 13.5456 3.0155 7.1186 5.0921 
 ALL 27552 17.9027 8.8269 9.9639 2.2483 6.5322 5.0553 

* N is the Number of Observations.  
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Table 4 presents MAPE estimation errors with IV across option maturities and moneyness. In Group 
1, American pricing models, MBAW and MQUAD, perform better than their European counterparts 
across various moneyness and maturities. Surprisingly in Group 2, with maturity 𝑀4, the European 
pricing model FBS’s relative performance gets significantly better for all moneyness. Not only does FBS 
perform better than the other models, the magnitude of the error is much smaller despite the longer 
maturity. However, the results reported in Table 4 are not inconsistent with the results of Table 3. The 
performance of FBS for at ATM, OTM and DOTM cases in Table 3 due to its extraordinary performance 
in 𝑀4. 
 
CONCLUSION AND FUTURE STUDY 

 
In this study, we examine the accuracy of two approximated solutions, denoted by FMBAW and 

FMQuad, to the fractional Black-Sholes partial differential equation by following the approaches of 
MBAW and MQuad, respectively. We empirically compare price errors using recent option data of 
petroleum industry - ConocoPhillips (COP), Chevron Corporation (CVX), Exxon Mobil (XOM) - traded 
on the Chicago Board of Trade Option Exchange (CBOE) from January 1, 2005 to December 31, 2009. 
Accuracy is measured with mean absolute percentage error with respect to option price (MAPE), mean 
percent error with respect to option price (MPE) and root mean squared error (RMSE) across different 
measures for moneyness, volatility, and option maturity. The American approximation models based on 
the fractional Brownian motion (fBm) are more accurate and reliable than the corresponding models, 
particular, with HV. In contrast to Ju and Zhong (1999), The MBAW performs better than MQuad. 
Overall, FMQuad seems to produces smaller error than FMBAW, but we find that when the maturity is 
less than 10 months (𝑀1,𝑀2,𝑀3) FMBAW is more accurate using MAPE. FMQuad is more reliable than 
the other models using RMSE regardless of volatilities. If the maturity is longer than 9 months (𝑀4), the 
FBS model noticeably outperforms the other models in all three measures.  

This study is different from Heo et al. (2010), where the estimations were obtained by replacing B-S 
by FBS evaluating European option price, and to derive the critical stock price. However, both studies 
reveal some similar results with FBS model’s overall better performance and as a good predictor of 
accuracy for American option pricing in this setting. As claimed in Heo et al. (2010), the FBS is a 
comprehensive choice for option pricing model for American option pricing as well as European option 
pricing.  

The Hurst parameter is the key in studying fractional Brownian motion and our results also verify that 
the Hurst parameter contributes tremendously to pricing accuracy. Developing a more accurate method of 
calculating the Hurst parameter directly from the real data instead of recovering it from the FBS model as 
used in here would improve accuracy of prediction of option prices. It would be interesting to observe the 
pricing bias generated by different Hurst parameter estimation methods as described in Biagini, et al. 
(2008). 
 
ENDNOTES 
 

1. See Daye (2003) and Biagini, et al. (2008) for excellent references of fBM theory and applications. 
2. Recently numerous studies compared and summarized various American option pricing models [Barone-

Adesi, (2005); Pressacco et al., (2008); Li (2010)]. Notably Pressacco, et al. (2008) evaluated efficiency of 
option pricing techniques and obtained numerical results on American options with early exercise 
opportunity. 

3. See equations (3) and (4) in Section MODELS for these moving boundary conditions. 
4. According to two-tails mean difference t-test with a 95% confidence interval comparing the mean errors for 

the paired sample with corresponding models in Group 1 and Group2,  P-values were less than 0.01 and we 
have sufficient evidence to claim that the models in Group 2 have less mean error than models in Group 1. 

5. The numbers of observations for 𝑀1(less than 3 months), 
𝑀2 (between 3 and 6 months),𝑀3(between 6 and 9 months), and 𝑀4 (greater than 9 month) are 15287, 
18706, 13288, and 27552, respectively. 
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6. According to error estimations conducted by option maturity of 30 day increment, this significant change 
occurs when the maturity is longer than 8 months in some cases. 

7. The parameter values S=40, X=45, r=0.0488, 𝜎=0.3, 𝛿 = 0 and h=0.55 are used. 
8. The numbers of observations for DITM, ITM, ATM, OTM, and DOTM are 39,700, 3,728, 4,475, 3,239, 

and 23,691, respectively 
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APPENDIX 
 

RMSE  AND MPE WITH IV BY MATURITY AND MONEYNESS 
 

 
  Group 1 Group 2 

Measure Maturity Moneyness B-S MBAW MQuad FBS FMBAW FMQuad 
RMSE  𝑴𝟏 DITM 0.5275 0.2752 0.2721 0.5031 0.2674 0.2663 
    ITM 0.2457 0.19 0.1847 0.1543 0.1354 0.1391 
    ATM 0.1925 0.1618 0.1611 0.1187 0.1131 0.1147 
    OTM 0.1516 0.1346 0.1362 0.0878 0.086 0.0862 
    DOTM 0.1028 0.0924 0.095 0.0628 0.0625 0.0623 
   𝑴𝟐 DITM 1.1426 0.4017 0.3824 1.0977 0.3882 0.3794 
    ITM 0.4912 0.3408 0.3344 0.4185 0.2952 0.2988 
    ATM 0.3957 0.2931 0.2952 0.3366 0.2559 0.2636 
    OTM 0.3094 0.2419 0.2486 0.2571 0.2086 0.2196 
    DOTM 0.1675 0.1386 0.1456 0.1393 0.1187 0.1247 
   𝑴𝟑 DITM 1.4633 0.5046 0.4741 1.3914 0.4493 0.4134 
    ITM 0.7068 0.4684 0.4666 0.6228 0.3881 0.3795 
    ATM 0.577 0.4062 0.4134 0.4912 0.3301 0.3497 
    OTM 0.4821 0.3623 0.3747 0.4144 0.2889 0.315 
    DOTM 0.2377 0.1872 0.1992 0.1973 0.1511 0.1891 
  𝑴𝟒  DITM 3.0711 0.984 0.9682 0.4543 1.089 0.9331 
    ITM 1.7546 0.9102 0.9528 0.3368 0.6588 0.5645 
    ATM 1.4985 0.8039 0.8564 0.2172 0.5671 0.4662 
    OTM 1.3554 0.7764 0.837 0.2626 0.4999 0.4121 
    DOTM 0.7207 0.4395 0.4943 0.1695 0.2802 0.2263 
MPE  𝑴𝟏 DITM -2.5321 -0.9926 -0.9388 -2.1728 -0.7589 -0.7001 
    ITM -4.0173 -2.2933 -2.0284 -1.2234 0.3894 0.6528 
    ATM -4.3848 -2.8536 -2.793 -0.4822 1.0014 1.0805 
    OTM -6.0974 -4.7266 -4.89 -0.4371 0.9244 0.7857 
    DOTM -8.1251 -6.6466 -7.0868 -0.8809 0.5776 0.1361 
   𝑴𝟐 DITM -6.4058 -2.1723 -2.0063 -5.7751 -1.7584 -1.6492 
    ITM -8.6543 -5.6197 -5.4805 -6.7673 -3.9878 -4.0028 
    ATM -9.0502 -6.2044 -6.2754 -6.7493 -4.1346 -4.2864 
    OTM -9.6112 -7.0016 -7.2889 -6.6711 -4.2523 -4.5269 
    DOTM -10.4076 -7.8998 -8.7378 -6.5739 -4.2622 -4.9692 
   𝑴𝟑 DITM -8.8114 -3.084 -2.8731 -7.8981 -2.0375 -1.4035 
    ITM -10.8326 -6.7293 -6.6983 -9.0338 -4.161 -2.833 
    ATM -11.0649 -7.2658 -7.441 -8.9179 -4.2432 -2.9942 
    OTM -11.6594 -8.1225 -8.5139 -9.6996 -5.0524 -3.6557 
    DOTM -12.463 -9.1311 -10.2768 -8.8061 -3.7961 -3.406 
   𝑴𝟒 DITM -16.5799 -5.4163 -5.3315 -0.2849 5.6157 4.6824 
    ITM -17.7113 -8.755 -9.1698 -0.2585 5.8582 4.7152 
    ATM -17.857 -9.2792 -9.9146 0.0979 6.3391 5.0435 
    OTM -17.9885 -9.8772 -10.7394 -0.2112 5.949 4.5378 
    DOTM -18.9032 -11.1382 -13.4608 -0.227 6.3887 3.8688 
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