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This paper explores the forecasting power of implied volatilities (IVs) in the crude oil and natural gas
options markets from 2005 through 2012. In these markets, IVs are efficient forecasts of future volatility.
The information content of oil and gas Vs differs substantially and systematically by strike price
displaying a “frown” pattern which is roughly the mirror image of the 1V smile pattern. For crude oil
options, the most informative in terms of predicting future volatility are IVs on nearby group and deep in-
the-money options. For natural gas options, 1Vs from near-the-money options contain considerable
information regarding future volatility.

INTRODUCTION

This paper explores the forecasting power of implied volatilities calculated from crude oil and natural
gas call options traded on the New York Mercantile Exchange (NYMEX) from January 2005 through
December 2012. Volatility is a key input into option pricing formulas, value-at-risk modeling, portfolio
allocation, and risk management and therefore, an accurate volatility forecast is essential to market
participants.

Forecasting volatility has traditionally been done using the generalized autoregressive conditional
heteroscedasticity (GARCH) approach by Bollerslev (1986) and Engle (1982). The GARCH framework
is also used in energy commodity markets (see, for example, Marzo and Zagaglia, 2010 and Wei et al.,
2010). It has long been documented that there are other sources of information about future volatility than
GARCH-based forecast. A natural candidate is implied volatility, the volatility that equates the theoretical
price of an option according to an option pricing formula with the observed market price, which reflects
the market’s expectation of future volatility over the life of the option. Theoretically, implied volatility
has a number of practical advantages over GARCH models. Implied volatility uses a larger information
set and furthermore, it can also take into account events such as announcements of macroeconomic
indicators (see Jorion, 1995) or releases of oil and gas storage reports.

If markets are efficient and the option pricing model is correct, implied volatilities should be unbiased
forecasts of future volatility and should fully subsume all available information, including the underlying
asset’s price history. However, numerous studies find that, when realized volatility is regressed on
implied volatility and measures of historical volatility, (1) the coefficient of implied volatility is
invariably less than one, implying that implied volatility is a biased estimator and (2) historical volatility
often has a significant positive coefficient, indicating that implied volatility does not efficiently impound
all information in the historical record (see, for example, Bollerslev et. al, 2013 and references within).
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The forecasting power of implied volatility calculated from option prices has been a subject of intense
research activity in recent decades. The literature is replete with studies on whether IV predicts future
volatility and whether it does so efficiently in various markets, including the stock and stock index
options marketl, foreign exchange options marketz, futures options markets3, Eurodollar options market4,
etc. In contrast to the literature on equity and other financial options, research on crude oil and natural gas
options markets has been quite sparse. This is particularly surprising for the crude oil and natural gas
markets considering the economic importance of these energy markets and the high volatility in oil and
gas prices. Crude oil and natural gas are two of the most essential energy sources in the U.S., accounting
for about 40% and 25% of the nation’s energy consumption, respectively. Since OPEC’s 1973 decision to
regulate its oil price independently, crude oil prices have been subject to dramatic volatility. Natural gas is
also one of the most volatile markets, particularly since its evolution from a highly regulated market to a
largely deregulated market in which prices are driven by supply and demand.

This study is motivated by the limited nature of previous research on the information content of crude
oil and natural gas implied volatilities. Day and Lewis (1993) find that crude oil IV outperforms historical
volatility in forecasting future volatility. Szakmary et al. (2003) report that IV calculated from crude oil
and natural gas options is a biased but still efficient forecast of future volatility. Martens and Zein (2004)
find that both realized volatility and IV contain useful information in forecasting crude oil volatility.
Agnolucci (2009) documents that GARCH-type models seem to perform better than IV. Haugom,
Langeland, Molnar, and Westgaard (2014) find evidence that IV significantly improves daily and weekly
volatility forecasts. However, the results in previous studies are limited to I'Vs calculated from nearby at-
the-money options. This limitation is due to the data sets used in those studies which only include nearby
at-the-money options. On the contrary, in this study, we construct a dataset that includes Vs across
various strike prices for a range of terms to maturity to (1) examine the forecasting power of IV across
strike prices and terms to maturity and (2) explore whether IV calculated from a strike price and maturity
group is an unbiased and/or efficient forecast of actual volatility. This research is motivated by the results
from Ederington and Guan (2005) for the stock index options. Contrary to the conventional notion that at-
the-money Vs are the most informative, Ederington and Guan (2005) find significant evidence that for
stock index options, IVs calculated from moderately high strike options are both unbiased and efficient
predictors of future volatility whereas those from at-the-money options are biased and less efficient.

While the forecasting performance of oil and gas [Vs from nearby at-the-money options has been the
subject of previous research, we expand this strand in the literature by examining I'V’s unbiasedness and
efficiency across strike prices for a range of terms to maturity. This enables us to consequently explore
the differences in the forecasting power of oil and gas [Vs by strike price and maturity. The main findings
and contributions to the literature can be summarized as follows. Although the unbiasedness of crude oil
and natural gas IVs depends on the term to maturity and moneyness of the options, 1V is a fairly efficient
forecast of future volatility in these markets. Regression results indicate that the common practice of
using [Vs calculated from at-the-money options to represent the volatility expectations of market
participants is justifiable for oil and gas nearby options but not for longer term options. Consequently,
results in this study have implications for market practitioners who need to better understand the behavior
of oil and gas ['Vs for valuation purposes.

The paper is organized as follows. The data and sampling procedure are provided in Section 2.
Section 3 presents the model framework. The forecasting performance of oil and gas IVs is reported in
Section 4. Section 5 concludes the paper.

DATA AND SAMPLING PROCEDURE

The data

Actual and implied volatilities are calculated from daily settlement prices of light, sweet crude oil and
natural gas futures and call options written on these futures contracts traded on the New York Mercantile
Exchange (NYMEX) from January 3, 2005 through December 31, 2012. According to NYMEX, crude oil
and natural gas futures and options are the world’s most and third-largest physical commodity futures and
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option contracts in the world by volume. For example, in 2013, daily average trading volume of crude oil
is 900,000 futures and options contracts and the largest open interest for both contracts reached 7.5
million lots. Price data on oil and gas futures and futures options traded on the NYMEX over the sample
assessed in this study have been obtained from the Commodity Research Bureau
(http://www.crbtrader.com).

There are a number of advantages to using the NYMEX options on futures. First, the NYMEX futures
and options on futures closing prices are observed at the same time and therefore, we can avoid the
nonsynchronous data problem. Second, since the underlying futures and options are traded side by side in
a very liquid market with minimal transaction costs, it is unlikely that the market will suffer from
asymmetric information dissemination which is the main source of measurement errors in examining
implied volatility (Jorion, 1995).

Two exclusionary criteria are applied to the data. First, we eliminate options with less than 7 calendar
days or more than 4 months to expiration. The shorter-term options have relatively small time premiums,
so a one-tick change (perhaps due to bid-ask bounce) leads to a jump in IVs calculated from very short
term options imparting noise in the IVs. Second, we exclude options with {C - [F-PV(X)]} < 10 cents
where C is the call price, F is the underlying futures price and PV(X) is the present value of the strike
price. If, for an option, {C - [F-PV(X)]} < 10 cents, trading in that option is likely light and its IV is
sensitive to a minimal change in its price, especially for short time-to-expiration options. Since price
changes in 1-cent increments, if {C - [F-PV(X)]} < 10 cents, the price and IV either change by more than
10% or not at all whereas they should be continuous. Also, when {C - [F-PV(X)]} < 10 cents, if the
equilibrium price and IV are unchanged but the transaction price changes by 1 cent due to bid-ask bounce,
the IV will appear to change by more than 10%.

This exclusion process left a total of 74,604 observations for crude oil call options and 79,162
observations for natural gas call options. For each market, the sample is broken into four maturity groups
corresponding to options’ term-to-maturity: near-, second-, third- and fourth- month. Each maturity group
is then divided into “moneyness” bins corresponding to the amount the call options are in or out of the
money. The extent to which the options are in or out of the money is represented by the “moneyness”
which is defined as X/F-1, where X is the call option’s strike price and F is the underlying futures price
on any given day.

We denote the “moneyness” bin as Glk or GOk, where “I” or “O” indicates whether the call option is
in or out of the money and “k” reports the moneyness where 1 is the closest to the money and 15 is the
furthest in- or out-of-the-money. GOk represents out-of-the-money options whose strike prices are in the

Ak -1)

4k -
interval, F' -{1 + }, F ~{1 +ﬁ} and closest to F - {1 +%} where F is the underlying futures

price that day. Thus GO1 represents the options whose strike prices are just above the current underlying
futures prices but not more than 4% higher than F. GOS5 represents the options whose strikes are at least
16% and not more than 20% above F. Similarly, Glk indicates in-the-money options whose strikes are in

- - Ak -1
the intervalF-{l—M}, F-{l—m} and closest to F~{1— ( )}
100 100

100

We do not necessarily have a price observation in each “moneyness” group each day, because (1)
trading is light in far in- and out-of-the-money options and (2) exclusionary process has eliminated
options whose implied volatilities are very sensitive to price changes.

Realized volatility

We measure the actual realized volatility over the life of the option observed on day t, ~ "/, as the

annualized standard deviation of returns over the period from day t through the expiration date 7 +7 for
option 1.
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where R =In(F,/F,_),F,is the closing price of the underlying futures contract on day s, F,_,is

the closing price of the same futures contract on day s-1, and 7 + 7, | is the expiration date of option i,;.

Implied volatility
Using Black’s (1976) model for options on futures, day ¢ closing prices for both the futures and call

options on futures, and risk-free interest rate, we solve for the implied standard deviation, ISD, ,, . on

each option (i,j) observed on day ¢, where i denotes the maturity group and j denotes the “moneyness” bin
in each maturity group, and C is the number of calendar days to expiration. While Black model ISDs may
not be the most appropriate, these are the ISDs used in previous literature so we continue this approach
for comparability’. In the case of a call option, ISD can be obtained by inverting
C= [Ft N(d;)—XN(d; )]e"T where C is the price of the call, F; is the current futures price, 7 is the time to

expiration of the option, X is the strike price of the option, 7 is the risk-free interest rate, while N indicates
the value of the cumulative normal distribution evaluated at ¢, = [ln( F/X)+(c?/2 )T]/ o7 and

d>=d;—oJ7 . The term ¢, denotes the standard deviation of the futures contract, i.e., our unknown

variable. Following Day and Lewis (1993), we compute the risk-free interest rate from the US Treasury
bill with closest maturity but following the expiration date. Data on the US Treasury bill have been
obtained from the US Treasury (www.treasurydirect.gov). For easier interpretation, these ISDs are
annualized by being multiplied by the square root of 252.

As pointed out by Ederington and Lee (1996), if Friday’s ISD is calculated using C calendar days,
Monday’s ISD is calculated using C-3 calendar days. This assumes that the variance of returns from
Friday’s close to Monday’s close is three times the normal weekday close-to-close variance. The evidence
in financial markets such as stock, stock index, T-Bond, Eurodollar does not support this assumption (see,
for example, French and Roll, 1986; Fleming et al., 1995; Ederington and Lee, 1996). Le (2015) finds that
in the crude oil market, the three-day weekend return variance is 18.32% higher than the average weekday
variance, which is still not as large as the calendar day assumption implies.

Consequently, we adjust ISD, ,, . to a trading day basis. In particular, we follow Ederington and Lee

1]
(1996) and calculate ISD, ;,, = ISD, T./T, where ISD, ;, ,and ISD, , . are the trading-day and

i,7,t,C
calendar-day ISDs, 7, and 7, are calendar days and trading days to expiration. As noted in Fleming et al.
(1995), this trading-day adjustment of ISD is more appropriate than simply using the number of trading
days in valuing the option. The time-to-expiration parameter affects an option’s value not only through

total volatility, but also through the expected rate of appreciation in the underlying asset’s value and
through the length of time over which the option’s expected payoftf is discounted to the present. Both of

these latter factors are more appropriately measured using calendar days. We use ISD, ;4. throughout this

study and omit the subscript 7 for simplicity.
Table 1 reports the summary statistics of crude oil and natural gas ISDs for the sample period.
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TABLE 1
SUMMARY STATISTICS

This table presents the summary statistics of crude oil and natural gas implied standard deviations
calculated from daily settlement prices of nearby, second-, third-, and fourth-month futures and call
options on futures from January 03, 2005 to December 31, 2012.

Crude Oil 2005 2006 2007 2008 2009 2010 2011 2012
Mean 0.3516 0.3152 0.3502 0.3708 0.3595 0.3418 0.3205 0.2479
Median 0.3571 0.3113 0.3153 0.3615 0.3295 0.3445 0.3209 0.2524
Maximum 0.5452 0.5794 0.9832 0.8582 0.7968 1.2222 1.1841 0.3446
Minimum 0.1090 0.1215 0.0848 0.1910 0.1929 0.0635 0.0851 0.0858
Std. Dev. 0.0429 0.0507 0.0986 0.0491 0.0796 0.0495 0.0323 0.0287
Skewness -0.6924 0.3348 1.0978 0.6272 1.6052 2.7198 0.5415  -1.0748
Kurtosis 4.15 3.73 3.50 4.04 5.49 4.01 6.50 5.12
Number of Obs 1,756 7,050 6,989 8,647 10,085 13,195 18,143 8,739
2" decile 0.3188 0.2756 0.2755 0.3282 0.3016 0.3033 0.2985 0.2287
4™ decile 0.3469 0.3010 0.3024 0.3507 0.3202 0.3321 0.3144 0.2462
6" decile 0.3678 0.3228 0.3297 0.3752 0.3432 0.3573 0.3275 0.2582
8™ decile 0.3871 0.3543 0.4538 0.4175 04188 0.3792 0.3432 0.2703
Natural Gas

Mean 0.5518 0.5555 0.6033 0.5409 0.5367 0.4701 0.4024 0.5618
Median 0.5649 0.5519 0.5961 0.5409 0.5260 0.4335 0.3866 0.5526
Maximum 0.7272 1.4800 1.4296 1.0262 1.2022 0.9732 0.9371 0.8885
Minimum 0.2383 0.1126 0.1820 0.2625 0.2039 0.1508 0.1293 0.2031
Std. Dev. 0.0778 0.1694 0.1335 0.0621 0.1074 0.1376 0.0889 0.1035
Skewness -0.7014 1.2046 0.5247 0.0460 0.9612 0.8213 0.9885 0.0913
Kurtosis 3.48 6.21 3.16 3.55 5.52 2.81 4.13 2.36
Number of Obs 1,425 8,111 8,481 10,883 15,615 15,384 11,938 7,324
2" decile 0.4869 0.4232 0.4865 0.4900 0.4512 0.3518 0.3324 0.4678
4™ decile 0.5422 0.5216 0.5629 0.5255 0.5020 0.3986 0.3683 0.5162
6" decile 0.5825 0.5811 0.6231 0.5567 0.5524 04717 0.4054 0.5971
8" decile 0.6176 0.6472 0.7039 0.5923 0.6137 0.5995 0.4603 0.6601

MODEL FRAMEWORK

If markets are efficient and the option pricing model is correct, the implied volatility calculated from
an option’s price should represent the average forecast of the underlying asset’s future volatility over the
remaining life of the option. Consequently, IVs should be unbiased forecasts of future volatility and
should fully impound all available information, including the asset’s price history. The information
content of IV is typically determined by estimating one or both of the following specifications, which are
known as the Mincer-Zarnowitz regression (Mincer and Zarnowitz, 1969) in the forecasting literature
(see, for example, Canina and Figlewski, 1993; Jorion, 1995; Christensen and Prabhala, 1998; Szakmary
et al., 2003; Ederington and Guan, 2005).

o, =a+pB-ISD, +u;, . (2) and
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o,=a'+ [-ISD, +f,-HIS, +u, , (3)

where 0, denotes the realized volatility from day 7 through the expiration of option j, ISD;, denotes

the implied volatility (normally the standard deviation) on option j observed on day 4 and HIS ,is a

measure of historical volatility (usually either the standard deviation of returns over some recent period or
a forecast based on GARCH-type estimation).
If IV is an unbiased forecast of realized volatility, we should find that & = 0 and £ =1 in Equation

(2) and ' =0, ﬂl =1 in Equation (3). If IV efficiently impounds all available information included in

historical volatility, ﬂz should be zero in Equation (3). Virtually all studies find that 0< /3 <1 and 0< ﬂl <l
and most find that « >0 (Ederington and Guan, 2005, Haugom et al., 2014). Thus, the evidence in most
options markets implies that IV is a biased predictor of realized volatility. There is mixed evidence of
whether IV is efficient, i.e., whether ,Bz is significant in Equation (3)°.

We estimate the following specifications on each “moneyness” bin across all four maturity groups.

o,()=a+p -ISD,,“ +u, (2) and
O-i,z(T) =a'+ ﬁl ‘ISD,’]’[ + ﬁ; 'HISI,],I +u1,_i (3)

where ISD, , is the implied standard deviation computed on day ¢ from the option in maturity group

i and “moneyness” groupj, and u, , represents the regression error. We include ISDs from all

S S5t

“moneyness” bins across terms to maturity until a bin’s number of observations falls below 500. o, ,(7) is
the realized volatility of log returns over the period between ¢ and 7+7, the option’s expiration date,

annualized by multiplying the standard deviation calculated per day by+«/252. Log return is defined as:

R =Ln (L] where F, is the price of the underlying futures contract on day ¢ and F,, is the price of the
-1
same futures contract on day #-1.
A common problem in most studies on the forecasting power of implied volatility is that due to

considerable overlap in the data set, the forecast errors #, ; , are serially correlated. On any day 7, ISD, Iy

represents expected volatility from day #+1 to day #+7, the day the option expires. Likewise, on day ¢+1,
ISD, ,,,, represents expected volatility from day #+2 to day /+7. Observations on realized volatility

1

1

o,(r) and o,,,(7r) have 7—1 days in common, observations on &,(7) and o,,,(r) have 7—2 days in

common, etc. which cause serious autocorrelation. When the data set contains overlapping observations,
ordinary least squares (OLS) regression coefficient estimates are still unbiased but OLS estimates of the
coefficients’ standard errors are biased downward. To correct for serial correlation, we employ Hansen’s
correction, (see Hansen, 1992), the most common procedure in the literature’.

Define X as the row vector of the independent variables for observation 7 in the sample; that is
X,=( 1V), [X,=( IV HIS), for regressions based on Equation (3)]. X is the N x2 matrix of

the X . [X is the Nx3 for regressions based on Equation (3)]. Let u, be the regression error for
observation n, and let # denote the N vector of the u,. Following Hansen (1982) and others, we compute

N N N
Y=, XX, + > Ok, (X', X+ X' X,), (6)

n=l1 k=1 n=k+1
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where u;, and u, are the regression residuals for observations £ and # from the OLS regression. Q (k,n) is
an indicator variable of the overlap between observations k& and »n. For observations on options with the
same expiry observed on the same day, QO (k,n) = 1 if there is an overlap between the periods to expiration
for the two options, and if there is no overlap, QO (k,n) = 0.
The corrected variance-covariance matrix for the estimated coefficients is
Q=X"'X)"¥(X'X)", (7)

We report the #-statistics based on the corrected standard errors after applying the Hansen correction.

RESULTS
TABLE 2
REALIZED VOLATILITY REGRESSED ON IMPLIED VOLATILITY
The table reports regression results from Equation (2): o,(v)=a + S3-1SD, ,, +u, ,, , for each of

the subsample defined by maturity and “moneyness” of oil and gas options between January 3, 2005, and
December 31, 2012. The coefficients are fitted by OLS, but the standard errors (labeled s.e) are corrected
for intercorrelation. ISD;;, is the implied standard deviation computed from the price of the call option
from maturity group i (expiring at #+7 ) and “moneyness” group j on date 7., () is the realized standard

*x%

deviation of the underling futures log returns from date 7 to 1+7 . u,, , is the regression error. " and

designate parameters which are significantly different from zero at the 0.05 and 0.01 levels, respectively
and " and ™ designate coefficients of ISD, ., which are significantly different from 1.0 at the 0.05 and 0.01

levels, respectively. Tests are two-tailed for intercept and one-tailed for slope coefficient. Y is the
reciprocal of the ratio of the sum of squared errors (SSE) from the regression for strike j to the SSE from
a regression with the average ISD for ATM options as the independent variable over observations
common to both regressions.

Crude Oil

Nearby GI6 GI5 Gl4 GI3 GI2 GI1 GOl1 GO2 GO3 GO4 GOS5
o 0.1678"  0.1561  0.0928"  0.0497  0.0342  0.0283  0.0314  0.0285  0.0414

s.e 0.0462  0.0430 0.0448  0.0456  0.0462  0.0473  0.0481  0.0522  0.0579

B 04494 0.4930"™  0.69177" 0.8179”  0.8717" 0.8851" 0.8614" 0.8486" 0.7881"

s.e 0.1306  0.1321 0.1418  0.1439  0.1473  0.1498  0.1497  0.1581  0.1692

Adj.R? 0.0785  0.1085 0.1727 02158 02287 02304 02303 0.2257  0.2081

Y ratio 09161 09212 0.9379 09662  0.9993  1.0002  0.9990  0.9890  0.9730

Second

o 02155 0.1862" 02059  0.1442"  0.1214°  0.1075°  0.1066° 0.0981° 0.0924  0.0877 0.0588"
s.e 0.0732  0.0553  0.0532 0.0514  0.052 0.0504  0.0492  0.048  0.0481  0.0487 0.0494
B 0.3726"1 04343717 041441 0.5924"1 0.6584T 0.7024"" 0.7031"" 0.72117F 0.7283"F 07301 ¢ 779371
s.e 0.2137 0.1668  0.1599 0.1509  0.1539  0.1493  0.1438 0.1388 0.1376  0.1375 0.1328

Adj.R2 0.1478  0.1583 0.1362 0.2285 0.2541 0.2780 0.2774 02908  0.2972  0.299  0.3607
Yratio 09120  0.9071 0.9020 0.9434 0.9734 1.0011 1.0012  1.0213  1.0259  1.0256 1.0240

Third

o 02085 022167 024747 021137  0.1826" 0.1642°  0.1513° 0.1471° 0.1371  0.1341 0.1355
s.e 0.0949  0.053 0.0525 0.0612 00635  0.0689  0.0706 00715 00717 0.0735_0.0814
B 03628 031651 027231 0.3803"" 0.4732"1" 0.5341"7 0.57117" 057871 0.6023"1 06058 ¢ 5880+
s.e 03115  0.1777  0.1648 0.1774  0.1868 02076 0212 02135 02117 0214 02288
Adj.R? 01414 0.1268  0.082 0.1222  0.1646  0.1927 02114 02158 0229  0.2319 0.2310

Yratio 1.0874  0.9024 0.9152 0.9638 0.9798 0.9859 1.0103  1.0134  1.0240  1.0424 1.0338
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Fourth

a 02522 023777 027977 026277 024107 022577 021437 0.2029° 0.1973°  0.1908" 0.1795
s.e 0.0669  0.0589  0.0659 0.065 0.0706  0.0804  0.0832 0.0825 0.0816 0.0736 0.0959
B, 023317 02631  0.1393 02044 02858 03390 03738 04062  0.4199"1" 04348" ¢ 4567
s.€ 02363  0.1999  0.2098 0.1969 02092 02453 02542 02506 02445 02168 0.2723
Adj.R> 00683 0.0779  0.0269 0.0428  0.0706  0.0855  0.1001  0.1161  0.1258  0.1299 0.1349
Yratio 1.1163 09743  0.9796 0.9819  0.9886  0.9914  1.0009 10153  1.0239  1.0280 1.0305
Natural Gas

Nearby  GI7 GI5 Gl4 GI3 GI2 GI1 GOl GO2 GO3 GO4
a 0.2060"  0.1180°  0.0752 0.0622 0.0587 0.0488 0.0693 0.1065  0.1351
s.e 0.0885 0.0578 0.0463 0.0509 0.0514 0.0559 0.0640 0.0747  0.0891
B, 0.6949"7  0.8193"  0.85811 08709 086857  0.86847 080927 0.7458"1 0.6874""
s.€ 0.1451 0.0955 0.0712 0.0829 0.0775 0.0851 0.0953 0.1106  0.1300
Adj. R? 0.1385 0.2613 0.3465 0.3188 0.3276 0.3174 0.2676 02255 02162
Y ratio 0.9757 0.9991 1.0116 1.0072 1.0030 0.9993 0.9947 0.9878  0.9911
a 02852  0.1160"  0.1136 0.0892 0.0810 0.0824 0.0760 0.0841 0.0742  0.0587
s.e 0.1757  0.0516 0.0588 0.0606 0.0622 0.0598 0.0638 0.0644 0.0700  0.0759
B, 0.5092  0.8184"  0.8084"° 08412 084367  0.8276" 08279  0.7935"  0.7982" 0.8119”
s.e 03579  0.1164 0.1234 0.1252 0.1274 0.1211 0.1275 0.1252 0.1348  0.1444
Adj. R* 0.0682  0.4499 0.4485 0.4554 0.4516 0.4487 0.4347 0.4201 0.4036  0.3898
Yratio 09938  0.9820 0.9921 0.9868 0.9950 1.0113 0.9961 0.9771 0.9740  0.9609
a 030727 022717 02084  0.1908”"  0.1843"  0.1715 0.1668° 0.1546 0.1533°  0.1550°
s.e 0.0870  0.0615 0.0614 0.0645 0.0644 0.0702 0.0717 0.0759 0.0748  0.0751
B, 034677 0.50491" 0527771 056131 0567171 059377 059281 0.608171 0.5985" 058527
s.e 02026  0.1344 0.1319 0.1381 0.1358 0.1484 0.1487 0.1572 0.1526  0.1495
Adj.R* 0.1030  0.2895 0.3125 0.3199 0.3236 0.3239 0.3209 0.3160 0.3099  0.3009
Yratio 09562  0.9615 0.9861 0.9896 0.9948 1.0027 0.9983 0.9921 0.9819 09713
a 02588 025737 0.2145 0.1842" 0.1778" 0.1605 0.1454 0.1345 0.1278  0.1219
s.e 0.0921  0.0972 0.0865 0.0863 0.0859 0.0850 0.0856 0.0860 0.0869  0.0893
B, 04565~ 0.4323~1  0.5180™"  0.5790"T  0.5788"""  0.6145"7  0.6367"7 0.6473""  0.6482"" 0.6468""
s.€ 02284  0.2281 0.2049 0.1998 0.1949 0.1904 0.1887 0.1871 0.1863  0.1902
Adj.R* 01382  0.1593 0.2245 0.2648 0.2679 0.2898 0.3076 0.3171 03202 03158
Yratio 08268  0.9137 0.9407 0.9609 0.9815 0.9890 1.0057 0.9981 0.9946  0.9882
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THE SLOPE COEFFICIENT OF IMPLIED VOLATILITY BY “MONEYNESS”

The slope

FIGURE 1

coefficient, ﬁl from estimations of the equation o,(r)=a + f,-1SD, , +

]t

Ljt 2

is

graphed against the “moneyness” bin for each maturity group. The X-axis represents the “moneyness”

bin and the Y-axis measures the slope coefficient of implied volatility for that “moneyness” bin.
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THE INFORMATION “FROWN” IN OPTION PRICES: RELATIVE FORECASTING POWER

FIGURE 2

OF THE IMPLIED VOLATILITY BY “MONEYNESS”

The forecasting power of the equation o,(7) =« + S,-ISD, ,, + y, is

“moneyness” for each maturity group. The X-axis represents each “moneyness” bin, the Y-axis measures
relative forecasting power as the reciprocal of the ratio of the sum of squared errors (SSE) from the
regression (2) for each “moneyness” bin j to the SSE for a regression with the average ISD for ATM

Lyt

options as the independent variable over observations common to both regressions.
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Bias and information content differences across maturities and moneyness

Estimations of Equation (2) for oil and gas IVs are reported in Table 2 and Figures 1 and 2.
Apparently, the patterns of the parameter estimates differ by time to expiration. Consider the results for
crude oil ISDs. For the nearby group, the intercepts, &'s, are not significantly different from zero for all

“moneyness” bins except for the deep ITM call options. For the second- and third-month groups, &'s are
only indistinguishable from zero for deep OTM call options.

Of more interest are the ISD coefficients. For the nearby group, ﬁl 's, the ISD coefficients, are close
to and insignificantly different from 1.0 for all “moneyness” bins except for the deep ITM calls. For the

second-, third- and fourth-month groups, f,'s are significantly less than 1.0.

We plot f, from crude oil options as a function of “moneyness” in Figure 1. For the nearby group,
B,'s display a “frown” image® that is approximately a reverse image of the volatility smile where p's
are highest for near-the-money options. However, for longer term groups, f, pattern is not a reverse

image of the volatility smile as ,81 's are generally highest for deep OTM calls.

For natural gas options, the intercepts, c 's, are not significantly distinguishable from zero in most
“moneyness” bins of the nearby and second-month groups. ¢ 's are significantly different from zero for
the third-month group and ITM calls in the fourth-month group. The slope coefficients ﬁl 's are close to

and insignificantly different from 1.0 for near-the-money nearby options and for most options in the
second-month subsamples.
As exhibited in Figure 1, the ISD coefficients for natural gas nearby options also display a “frown”

pattern where ,81 is highest for the near-the-money groups. ﬂl is less variable in the second-month

group. For the third- and fourth-month subsamples, ﬂl is generally higher for OTM options.

As shown in Table 2, the adjusted R’ statistics pattern also varies by time to expiration. Adjusted R’
statistics for nearby crude oil options display a frown pattern in that they are small at deep ITM or OTM
calls and peak at near-the-money calls. For the longer term crude oil options, adjusted R’ generally
increases with strike price. For natural gas nearby and second-month options, adjusted R’ statistics are
generally higher for ITM options and decreases with strike prices. For natural gas third- and fourth-month
groups, adjusted R’ is highest for ATM options.

As noted in Ederington and Guan (2005), comparing R’ across different “moneyness” groups is
problematic in that the samples differ somewhat. On a given day there might be an observation for ATM
group but not for ITM or OTM so R’ could be different because one “moneyness” group is observed on a
day with a small error and another on a day with a large error. To compare the information content of
ISDs from different “moneyness” groups on a more consistent basis, we follow Ederington and Guan
(2005) and calculate the relative forecasting power for each “moneyness” group. First we form an un-
weighted average ISDa;,, of the ISDs for the two ATM subsamples: GI1 and GO1 in maturity group 7 on
day t. o, (r)is then regressed on ISDa;,. Let u(ATMa);, be the residual from this regression on day # and

u;;, be the residual from one of the individual “moneyness” regressions in Table 2, we then form the ratio
= Zu(ATMa)i, / Zuf})r where both summations are over only those daily observations where both

u(ATMa),, and u;;, are observed. So Y;; measures the relative explanatory power of an individual ISD
from “moneyness” group j versus the average ISD of the two ATM options. If ¥, <I, the average ATM
ISDs predicts future volatility over the life of the option better than the individual ISD. If ¥;; >1, the
individual ISD predicts future volatility better than the ATM average.

As reported in Table 2 and graphed in Figure 2, Y pattern varies by time-to-maturity. For crude oil
nearby options, relative R’s are highest for ATM options. However, for longer term crude oil options, R’s
are generally higher for OTM options. For natural gas nearby options, relative R’s are highest for
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moderately low strike options in the “moneyness” bins GI1, GI2 and GI3. For longer term natural gas
options, relative R”’s are higher for ATM options than for ITM or OTM options.

In summary, the information content of oil and gas Vs varies considerably by time-to-maturity and
by options’ “moneyness”. For crude oil options, the most informative in terms of predicting future
volatility are ISDs calculated from option prices of the nearby group, except for deep ITM options. For
natural gas options, the most informative in terms of forecasting future volatility are ISDs calculated from
prices of near-the-money options in the nearby group and of most options in the second-month group. For
these “most informative™ options, the regression evidence in Table 2 is consistent with the hypothesis that

IVs are unbiased predictors of actual volatility as the slope coefficients, f,'s are close to and

insignificantly different from 1.0 and the intercepts, &'s are close to and insignificantly different from
zero. For other option groups, the hypothesis that IVs are unbiased predictors of future volatility is
rejected. The prices of options in those groups are apparently heavily influenced by factors other than the
market’s expectation of future volatility.

Both academic researchers and market participants normally use IV calculated from ATM options to
represent the volatility expectations of market participants. However, results in Table 2 indicate that while
that practice is justifiable for natural gas options and for nearby crude oil options, it is problematic for
longer term crude oil options.

Efficiency

Next we test whether oil and gas Vs efficiently impound all the historical information by estimating
Equation (3) where a measure of historical volatility is added to the equation. For historical volatility, we
use the volatility forecast over the life of the options generated by a GARCH-type model developed by
Glosten, Jagannathan, and Runkle (1993)9. Results are reported in Table 3. For the three far ITM crude oil

nearby groups (GI3, Gl4, GI5), [}25, the coefficients of historical volatility forecast, are significantly
different from zero and relatively sizable, implying that the ISDs of these groups are influenced by factors
other than the market’s volatility expectation. Except for these three groups, ;s are insignificantly

different from zero across all other option groups, implying that crude oil and natural gas implied
volatilities generally impound information in historical volatility fairly efficiently.

The evidence that IV from oil and gas options is a fairly efficient forecast of future volatility is
consistent with the findings in Christensen and Prabhala (1998), Fleming (1998), Blair et al. (2001),
Szakmary et al. (2003), Corrado and Miller (2003) and Ederington and Guan (2005).

TABLE 3
REALIZED VOLATILITY REGRESSED ON IMPLIED VOLATILITY AND HISTORICAL
VOLATILITY

The table reports regression results from Equation 3: o,(r) = +,-1SD,,,+ f3,-HIS, ;, +u,,, for

i,j,t i,],1
each of the subsample defined by maturity and “moneyness” of oil and gas options between January 03,
2005, and December 31, 2012. ISD,,, is the implied standard deviation computed from the price of the
call option from maturity group 7 (expiring at #+7 ), and “moneyness” group j on date 7. HIS;;, is the
volatility forecast over the life of the option generated by the Glosten et al. (1993) model. The coefficients
are fitted by OLS, but the standard errors (labeled s.e) are corrected for intercorrelation. o, (7) is the

realized standard deviation of the underlying futures log returns from date 7 to #+7 . u,;, is the regression

error. - and * designate parameters which are significantly different from zero at the 0.05 and 0.01 levels,
respectively and " and ™' designate coefficients of ISD,;, which are significantly different from 1.0 at the
0.05 and 0.01 levels, respectively. Tests are two-tailed for intercept and one-tailed for slope coefficient.
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Crude Oil

Nearby GI6 GI5 Gl4 GI3 GI2 GIl GOl GO2 GO3 GO4

a 0.0359 0.0202 0.0069 -0.0107 -0.0107  -0.0049  -0.0011  -0.0143  -0.0089
s.e 0.0544 0.0607 0.0582 0.0527 0.0538  0.0600  0.0642  0.0652  0.0678

B 0358511 0.4343™"  0.5678"1T  0.7045"1 07774 0.8040" 0.7820"  0.7455" 0.5809"""
s.e 0.1271 0.1263 0.1509 0.1699 0.1793  0.1865  0.1857  0.1939  0.2026

B, 0.4409™'" 0417811 0.3428"T"  0.2643 0.2039  0.1609  0.1581 0.2086  0.3361

s.€ 0.1522 0.1597 0.1709 0.1774 0.1802  0.2035 02187 02244  0.2465

Adj.R? 0.1113 0.1419 0.1861 0.2235 0.2336  0.2336  0.2335 02313 0.2024

Second

a 0.1736"  0.1438”  0.1569 0.1242" 0.1221° 0.1098"  0.1062°  0.1001°  0.0964"  0.0754

s.€ 0.0734  0.0548 0.0613 0.0548 0.0505 0.0461  0.0436  0.0437  0.0441  0.0448

By 0.3406 03964 03638 056337 0.6418"  0.7079" 0.7018" 0.7266"  0.7395" 0.7550"
s.€ 0.2481  0.2012 0.1843 0.1797 0.1923 0.1888  0.1869  0.1781 0.1737  0.1666

B, 0.1540  0.1625 0.1941 0.0869 0.0146 -0.0122  0.0026  -0.0113  -0.0228  -0.0069
s.e 0.2858  0.2247 0.2046 0.1751 0.1654 0.1422 01359  0.1296  0.1213  0.1184

Adj.R? 0.1545  0.1661 0.1428 0.2299 0.2500 02781 02774 02908 02974  0.3227

Third

a 0.2403"  0.2333" 0.2132" 0.1917" 0.1689" 0.1541"  0.1463°  0.1452 0.1341  0.1307
s.e 0.0758  0.0635 0.0772 0.0721 0.0730 0.0747  0.0739  0.0766 0.0766  0.0812
By 0.3837  0.3259 0.2399 0.3537°"  0.4473"""  0.5134"T 055957 0.5744™T  0.5949"7 0.5778""F
s.e 0.2394  0.2060 0.1829 0.2036 0.2092 0.2360  0.2468  0.2419 0.2399  0.2402
B, -0.1217  -0.0465 0.1406 0.0881 0.0686 0.0522  0.0271  0.0103 0.0170  0.0316
s.e 02762  0.2598 0.2536 0.2278 0.2072 02072 02077  0.2043 0.1999  0.2046
Adj.R? 0.1454  0.1276 0.0870 0.1242 0.1659 0.1934 02116  0.2158 0.2291  0.2310
Fourth GI5 Gl4 GI3 GI2 GIl GOl GO2 GO3 GO5
o 0.2488" 02378 027417 025147 023507 02172 02037 0.1946°  0.1857°  0.1683
s.e 0.0643  0.0636 0.0626 0.0643 0.0758 0.0821  0.0852  0.0867 0.0854  0.0940
B 0.2321  0.2632 0.1371 0.2003 0.2832 0.3338  0.3659  0.4006 0.4101""  0.4567"
s.e 0.2409  0.2403 0.2132 0.1990 0.2096 0.2469 02556  0.2505 02437  0.2644
B, 0.0120  -0.0005 0.0203 0.0405 0.0217 0.0324  0.0421  0.0325 0.0472  0.0408
s.e 0.1153  0.0958 0.0785 0.0809 0.0834 0.0757  0.0781  0.0813 0.0795  0.0788

Adj R>0.0667  0.0779 0.0271 0.0436 0.0707 0.0859  0.1008  0.1165 0.1269  0.1435
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Natural Gas

Nearby  GI7 GI5 GI4 GI3 GI2 GIl GOl GO2 GO3 GO4
a 0.1766 0.1022 0.0618 0.0507 0.0505  0.0420  0.0627  0.1044  0.1398
s.e 0.0862 0.0584 0.0483 0.0542 0.0524 00571  0.0655  0.0772  0.0928
B, 0.4919"T  0.6940"  0.7492”  0.7593"  0.75797  0.7694  0.7097"  0.6326" 0.5457"
s.e 0.2384 0.1813 0.1587 0.1501 0.1631  0.1723  0.1792  0.1893 02123
B, 0.2084 0.1303 0.1173 0.1187 0.1132 01029  0.1050  0.1126  0.1325
s.e 0.1587 0.1553 0.1559 0.1472 0.1492  0.1569  0.1554  0.1493  0.1478
Adj. R? 0.1534 0.2647 0.3511 0.3236 03316 03208 02715 0.2302  0.2243
Second

a 0.3489  0.1416" 0.1395" 0.1174 0.1076 0.1086  0.0927  0.0987  0.0899  0.0708
5. 0.1785  0.0679 0.0694 0.0682 0.0680 0.0657  0.0717  0.0719  0.0757  0.0824
B, 0.6259°  0.8839”  0.8792"  0.9287"  0.9296"  0.9094"  0.8798" 0.8364" 0.8492” 0.8510"
5. 0.3763  0.1466 0.1578 0.1638 0.1685 0.1607  0.1724  0.1712  0.1865  0.1921
B, -0.2016  -0.1032 -0.1111 -0.1323 -0.1292 -0.1258  -0.0809  -0.0694  -0.0803  -0.0622
5. 0.1588  0.1566 0.1548 0.1506 0.1487 0.1460  0.1693  0.1708  0.1788  0.1874
Adi.R* 0.0914  0.4523 0.4513 0.4597 0.4558 0.4527 04360 04210  0.4049  0.3903
Third

a 02804 020777  0.1984"  0.1803" 0.1715" 0.1592"  0.1596"  0.1433 0.1436  0.1371
s.e 0.1061 0.0702 0.0693 0.0742 0.0748 0.0763  0.0806  0.0832  0.0833  0.0839
B, 0.3157 0.4659  0.5062""  0.5382"""  0.5393"1"  0.5631"" 0.5759"" 05777 057147 0.5326"
s.e 02252 0.1733 0.1732 0.1783 0.1747 0.1987  0.1922 02105 02088  0.2070
B, 0.0778  0.0736 0.0400 0.0431 0.0527 0.0548  0.0315  0.0537  0.0478  0.0917
s.e 0.1936  0.1642 0.1641 0.1759 0.1791 0.1906  0.1935 02103 02199  0.2235
Adi.R* 01068  0.2925 0.3130 0.3204 0.3247 03243 03210 03163 03099  0.3032
Fourth

a 02531 025447 022287  0.1999" 0.1894" 0.1716°  0.1591 0.1478  0.1415 0.1322
s.e 0.1020  0.0977 0.0854 0.0849 0.0831 0.0837  0.0837  0.0833  0.0839  0.0870
B, 0.4486""  0.4265 0.5365""  0.61907  0.6065°  0.64107 0.6707" 0.6815"  0.6846"  0.6714"
s.e 02693  0.2816 0.2670 0.2633 0.2571 0.2483 02491 02486 02490  0.2484
B, 0.0193  0.0118 -0.0363 -0.0744 -0.0538 -0.0519  -0.0660  -0.0659  -0.0701  -0.0501
s.e 0.2158  0.2086 0.2083 0.2073 0.2047 02018 02040 02055 02085 02106
Adi.R* 0.1375  0.1588 0.2247 0.2673 0.2690 0.2908 03094 03188 03222 0.3166
CONCLUSIONS

This paper explores the forecasting power of crude oil and natural gas implied volatilities. Using the
IVs calculated from crude oil and natural gas futures and futures’ call options prices from January 2005
through December 2012, we have shown that (1) oil and gas Vs are efficient forecasts of future volatility
across terms to maturity and (2) the information content of oil and gas IVs differs substantially and
systematically by strike price displaying a “frown” pattern which is roughly the mirror image of the well-
documented IV smile pattern. For crude oil options, the most informative in terms of predicting future
volatility are [Vs on nearby group and deep ITM options. For natural gas options, Vs calculated from the
near-the-money options in the nearby group and in the second-month group contain considerable
information regarding future volatility. Finally, evidence in this paper suggests that in testing whether IV
is an unbiased and efficient forecast of future volatility, it is essential to estimate separate coefficient for

each strike price.
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ENDNOTES

1. See, for example, Day and Lewis (1993), Lamoureux and Lastrapes (1993). Canina and Figlewski (1993),
Christensen and Prabhala (1998), etc.

2. Jorion (1995)

3. See, Day and Lewis (1993), Martens and Zein (2004), Szakmary, Ors, Kim, and Davidson (2003)

4. Amin and Ng (1997)

5. Black’s (1976) model is a simplified version of B-S adjusted for the facts that (1) futures pay no dividends,

and (2) futures entail no investment at time #. While Black’s (1976) model is for European options, crude
oil and natural gas futures options are American. However, like the S&P 500 futures options, early exercise
is rare for crude oil and natural gas options. Also the bias in implied volatility due to the use of a European
option model for American options is small (Jorion, 1995).

6. Canina and Figlewski (1993), Day and Lewis (1993), Ederington and Guan (2002) and Martens and Zein

(2004) observe significant values for ﬁz in Eq. (3) in at least some data sets while Christensen and

Prabhala (1998), Fleming (1998), Blair et al. (2001), Szakmary et al. (2003), and Corrado and Miller
(2003) find no evidence that historical volatility or GARCH forecasts contain additional information.

7. Examples are Canina and Figlewski (1993), Jorion (1995), Ederington and Guan (2005) and others.

The information “frown” is first explored in Ederington and Guan (2005).

9. We use the GJR (Glosten et al., 1993) model to forecast historical volatility over the life of the option. The

GIJR specification ish =+ j/lgf_l +y,h_ + }/377’8[2_1, (6) where n =1if &_ <0 and 0 otherwise.

e

The regression estimates from (6) are used to generate h.,, volatility forecast for the next day. h. is then
substituted back into the equation to generate a volatility forecast for the following day, h.,. This substitution
continues for each day through the life of the option.
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