A Temporal Analysis of Expectation Management: Evidence from Public Management Earnings Forecasts

Bo Liu Susquehanna University

Dana Zhang Susquehanna University

We investigate the time trend of expectation management through management earnings forecasts to avoid negative earnings surprise. We find that the percentage of firms missing analyst earnings target before downward management guidance but meeting revised analyst earnings target have more than tripled from 5.5% in 1995 to 20.0% in 2014. We also show increase of both the magnitude of pessimistic management forecast bias and analysts' tendency to converge to management guidance, two potential explanations for increasing expectation management. Additional analysis indicates that the increase in analyst convergence is more prominent for firms with larger downward bias in previous management forecasts.

Keywords: Expectation Management, Management Earnings Forecast, Analyst Earnings Forecast

INTRODUCTION

Negative earnings surprise could have detrimental implications for corporate managers (Brown and Higgins, 2001; Skinner and Sloan, 2002; Brown and Caylor, 2005). Extant studies have documented that managers try to meet or beat analysts' earnings expectations by either managing earnings upward or guiding expectations downward (Matsumoto, 2002; Burgstahler and Eames, 2006). Tighter financial reporting and investor protection regulations over the past two decades have made it increasingly difficult and costly for managers to meet or beat analysts' earnings expectations through earnings management. At the same time, managers are facing stronger incentives to achieve positive earnings surprise due to the greater weight of stock-based compensation in their pay packages and the growth of momentum investors who sell stocks of companies that fail to pass analysts' earnings threshold (Brown, 2001; Skinner and Sloan, 2002; Richardson, Teoh, and Wysocki, 2004). Therefore, managers might be increasingly impelled to avoid negative earnings surprise through expectation management. However, both academia and business press have brought expectation management to public attention (Vickers, 1999), and the increased public scrutiny could deter the usage of expectation management.

On the other side of the earnings surprise game, analyst incentives to curry favor with managers and follow managers' lead on earnings forecast may be changing. Policy makers have been trying to reduce the conflict of interests analysts face through a series of regulatory actions such as blocking the ties of analyst compensation to investment banking deals, increasing disclosures about the conflict of interests,

and physical separation and restricted communication between research and investment banking personnel (Section 501 of the Sarbanes-Oxley Act of 2002; Regulation Analyst Certification of 2003; Global Research Analyst Settlement of 2003). All those regulatory changes might affect analysts' reaction to managers' intent to guide down earnings expectations and the ensuing expectation management.

Both prior literature and anecdotal evidence reveal that managers use their earnings guidance to affect analysts' earnings forecast (Baik and Jiang, 2006; Cotter, Tuna, and Wysocki, 2006; Gryta, Ng, and Francis, 2016). Disclosure regulation, such as Regulation Fair Disclosure (Reg FD), could also increase analysts' reliance on public management forecasts by restricting private communication channels between managers and analysts (Cotter, et al., 2006; Kross and Suk, 2012). Therefore, in this study, we examine the frequency of successful expectation management through public management earnings forecasts. Specifically, we conduct *temporal* analyses of 1) expectation management to avoid negative earnings surprises through management earnings forecasts, 2) the bias of public management earnings forecasts, and 3) individual analysts' responses to management earnings forecasts.

Our analyses are based on quarterly management forecasts from IBES Guidance and individual analyst forecasts from IBES Detail History over the 20-year period from 1995 to 2014. We define management guidance as successful expectation management if actual earnings miss analysts' initial consensus forecast before the last management forecast for the quarter but meet or beat analysts' revised consensus forecast. We find that the percentage of successful expectation management more than triples from 5.5% in 1995 to 20.0% in 2014. The documented time trend is also robust to the positive effects of Sarbanes-Oxley Act (SOX) and Reg FD on expectation management, indicating the temporal increase of expectation management is not solely driven by those two regulations.

To further study the causes for increased expectation management, we examine the temporal changes in the management forecast bias and individual analysts' responses to management forecast. With respect to management forecasting behaviors, our results reveal increasing pessimistic bias of management guidance. With respect to analyst responses to management forecasts, we find that the percentage of analysts who converge to management guidance more than double over the sample period from 28% in 1995 to 64% in 2014. Our evidence also shows analysts' greater tendency to converge over time is more prominent for firms with larger pessimistic bias in their previously issued management forecasts, suggesting that analysts either fail to adjust their responses based on previous track record of management forecasts or knowingly converge to downwardly biased management forecasts to help managers meet analyst expectations. Given prior studies find that analysts are able to discern the quality of management forecasts and adjust their responses to management forecasts based on previous track record (Williams, 1996; Yang, 2012), our evidence is more consistent with some analysts knowingly cooperating with the managers in the earnings surprise game.

We also find that more analysts sacrifice their forecast accuracy by converging to management guidance, and this phenomenon is especially pronounced for downward guidance. We show that downward guidance becomes less informative over time relative to individual analysts' initial forecasts. Specifically, the percentage of management forecasts that are more accurate than analysts' initial forecasts decreases from 72% in 1995 to 51% in 2014. In contrast, the accuracy of upward guidance relative to analyst forecasts has increased over time. Given the importance of forecast accuracy to analysts' career (Brown, Call, Clement, and Sharp, 2015), analysts bear significant costs by converging to downward guidance. Prior experimental studies show that maintaining good relationships with the management is the primary reason that analysts choose not to adjust for downward bias in management guidance (Libby, Hunton, Tan, and Seybert, 2008; Tan, Libby, and Hunton, 2010). Using archival approach, Feng and McVay (2010) show that analysts have the incentives to curry favor with management and obtain underwriting business by overweighting management guidance. Given the increase in the size of underwriting syndicate, the increased number of analysts who are willing to converge to management forecasts at the expense of their own forecast accuracy may be due to the increased number of affiliated analysts with stronger incentives to please the management (Jo, Kim, and Shin, 2012; Corwin and Schutlz, 2005).

Our study contributes to the expectation management literature. While prior studies examine expectation management across countries or over an older period of time (Brown and Higgins, 2005; Koh, Matsumoto, and Rajgopal, 2008), our study is the first one, to our best knowledge, that sheds light on the increasingly prominent role of expectation management in the U.S. through public management earnings forecast over the most recent 20-year period. More importantly, prior studies about the temporal change in expectation management use the path of analyst forecasts as an indirect proxy for expectation management. By directly examining the interaction between managers and analysts in expectation management by investigating the changes of forecasting behaviors of both managers and analysts. While Baik and Jiang (2006) and Cotter et al. (2006) examine the characteristics of management earnings guidance and the ensuing analysts' consensus to investigate whether managers use their earnings forecasts to guide down analysts' responses, and the resulting accuracy change of analyst forecasts, thus providing deeper and more disaggregated insights into expectation management.

Our study also has public policy implications. While the goals of major security regulations in the past two decades were to curb earnings management and improve the information environment faced by investors, our study demonstrates an unintended consequence of increased expectation management through publicly announced management earnings forecast. However, this form of detrimental maneuver has not received enough attention from policy makers (Baik and Jiang, 2006). In addition, our evidence shows analysts' greater tendency to converge to management guidance in an era of increasing size of underwriter syndicate. While the SEC and major stock exchanges have enacted rules to curb analysts' conflict of interest, our evidence suggests that the conflict of interest analysts face between providing accurate earnings forecasts and generating investment banking businesses remain a persistent concern.¹

The rest of the paper is organized as follows. Section 2 reviews the institutional background and the literature of expectation management to form our predictions. Section 3 describes the sample selection and data. Section 4 presents our empirical results. Section 5 concludes.

LITERATURE REVIEW, INSTITUTIONAL BACKGROUND, AND RESEARCH QUESTIONS

Prospect theory (Kahneman and Tversky, 1979) predicts that reference points play a crucial role in decision making. Degeorge, Patel, and Zeckhauser (1999) apply the theory in the context of investors' investment decision and argue that analysts' earnings expectation is one of the three psychological benchmarks investors use for assessing firms' performance and, as a result, managers would try to avoid negative earnings surprise by meeting or beating analysts' earnings expectations. Prior studies document evidence supporting the importance of avoiding negative earnings surprise. For example, Skinner and Sloan (2002) document that the market punishes missing a forecast benchmark more than it rewards meeting a consensus forecast, and Bartov, Givoly, and Hayn (2002) document that firms meeting or beating analysts' earnings thresholds is becoming the most important objective for corporate managers due to investors paying increased attention to analyst earnings forecasts. Consistently, Brown (2001) and Matsumoto (2002) document an overall increase of small positive earnings surprises over time.

Early studies also document that both earnings management and expectation management play a role in meeting analysts' earnings benchmarks (Matsumoto, 2002; Burgstahler and Eames, 2006). Prior studies have conducted cross-country analyses of the practice of managing earnings surprises and the mix of the two mechanisms to achieve positive earnings surprises. For example, Brown and Higgins (2001) find that US managers are more (less) likely to report earnings with small positive (negative) earnings surprise compared with their counterparts in 12 other countries due to greater emphasis on short-term stock price and litigation concerns in the US. Further, Leuz, Nanda, and Wysocki (2003) find that earnings management decreases with the level of investor protection in a country, and Brown and Higgins (2005) document that countries with stronger investor protection are more prone to use expectation management to avoid negative earnings surprises than to use earnings management.

Even in the US, which is considered to have strong investor protection, the reliance on the two mechanisms to beat analysts' earnings target could be changing over time. The level of investors' protection increased following the passage of SOX in 2002, triggered by several corporate and accounting scandals in the early 2000s. Major U.S. stock exchanges also mandated, around the same time, a number of new listing requirements to enhance listing companies' corporate governance standards, including mandatory internal audit function and several independent directors' requirements. Those regulatory changes made it increasingly difficult and costly for managers to meet or beat analysts' earnings management declined after SOX (Cohen, Dey, and Lys, 2008; Koh, et al., 2008). As a result, expectation management might become more appealing and thus increase over time in the earnings surprise game. However, both academia and business press have brought expectation management to public attention (Vickers, 1999), and the increased public scrutiny could deter the usage of expectation management.

Indeed, while Koh et al. (2008) find increased usage of expectation management in the post-SOX period compared with in the pre-SOX period, Bartov and Cohen (2009) document the opposite trend. The two studies use different measures for expectation management. Koh et al. (2008) follow Matsumoto (2002)'s expected forecast model based on the time-series behaviors of past quarterly earnings, and Bartov and Cohen (2009) capture expectation management through analysts' forecast revisions. Both studies indirectly measure management intention to walk down analyst forecasts and do not examine the interaction between managers and analysts in expectation management. Anecdotal evidence reveals that managers increasingly use their earnings guidance to affect analysts' earnings forecast (Gryta, et al., 2016). The news article mentions that although companies are prohibited from selective disclosure, the rule does not prohibit private conversations that does not communicate material nonpublic information. Analysts interviewed by the authors reveal that "companies have called to ask if I was aware of their guidance and incorporated it into my models". Therefore, in order to more directly capture the temporal changes of expectation management as a result of managers' intervention, in our study, we examine the frequency of successful expectation management through management earnings forecasts. Therefore, our first research question is as follows:

RQ1: How does the frequency of successful expectation management through management earnings forecasts change over time?

Temporal shift in the frequency of successful expectation management may be driven by changes in management behaviors and/or analyst behaviors. In order to disentangle the effects, we separately examine temporal changes of management forecasting behaviors and analysts' responses to management forecasts. On one side, managers may face greater incentives to achieve positive earnings surprise. Stock-based compensation has gained weight in managers' pay packages, increasing managers' motivations to avoid negative earnings surprise that could hurt their companies' stock prices (Richardson, et al., 2004; Brown and Higgins, 2005). In addition, the growth of momentum investors who sell stocks of companies that fail to pass analysts' earnings threshold also push managers to avoid negative earnings surprise (Brown, 2001; Sloan and Skinner, 2002). Prior studies document that managers issue pessimistic earnings forecasts to lower analysts' earnings expectations to avoid negative earnings surprises (Baik and Jiang, 2006; Cotter, et al., 2006). Therefore, to better capture the variation of manager's incentives to avoid negative earnings surprise, we examine whether management forecast bias has changed over time. Our second research question is as follows:

RQ2: How does management forecast bias change over time?

Analysts' responses to public management forecasts might also change as a result of various regulations passed in the last two decades. For example, the passage of Regulation Fair Disclosure (Reg

FD) could increase analysts' reliance on public management forecasts by restricting private communication channels between managers and analysts (Kross and Suk, 2012; Cotter, et al., 2006). However, Brown et al. (2015) report that while Reg FD significantly altered the communication channels between the management and analysts, the communication between the two parties almost reverted back to the level in the pre-Reg FD period if not more, which might reduce analysts' reliance on public management forecasts over time.

In addition, analyst incentives to curry favor with the managers and converge to management guidance might not stay the same. Prior literature has shown that analysts issue biased forecasts to win underwriting business (Lin and McNichols, 1998; Feng and McVay, 2010). Policy makers have been trying to reduce the conflict of interest analysts face through a series of regulatory actions. For example, Title 5 of SOX requires disclosure of analysts' conflict of interest induced by external financing and investment banking services. On Feb 6, 2003, the SEC also issued new Regulation Analyst Certification (Regulation AC) requiring analysts to certify the truthfulness of their views in research reports and disclose whether and how their compensation was related to their recommendation in the report. In addition, on April 28, 2003, the Global Research Analyst Settlement was issued that requires investment banks to physically separate and restrict the communication between the research and investment department of the 10 major brokerage firms. However, Brown et al. (2015) find that those regulatory changes might not be producing the anticipated effects of curbing analysts' conflict of interest in that many analysts still believe generating underwriting business is an important compensation source for research analysts. That is, analysts might still face incentives to cooperate with the management in expectation management by converging to downwardly biased management forecasts. All in all, it is not clear how analysts' response to management earnings forecast change over time. Therefore, our third research question is as follows:

RQ3: How do individual analysts' responses to management forecasts change over time?

RESEARCH DESIGN

Sample Selection

We obtain management quarterly earnings forecasts issued from 1995 to 2014 from IBES Guidance. We include only point or range earnings per share (EPS) forecasts issued by the management. We use the last management forecast for each quarter if there are multiple management forecasts for a quarter. The value of the management forecast is set to equal the point forecast or the mean of the upper and lower bound of a range forecast. We obtain individual analyst forecasts from IBES detail file. Company's financial information and stock price information is obtained from Compustat and CRSP respectively. In order to observe how individual analysts respond to management forecasts, we match each management forecast with each individual analyst's last earnings forecast issued within one year of the management forecast date (-365, -1) and the same analyst's first forecast revision issued within one month after the management forecast date (+1, +30).² We require at least three individual analyst forecasts for each management forecast in order to form a reasonable consensus. The sample used in the main analysis includes 440,282 individual analyst forecasts and 38,744 quarterly management forecasts for 3,677 unique firms from 1995 to 2014. Requiring the existence of firm characteristics in Compustat results in the drop of 367 firm-quarter observations, so the multivariate regression includes 38,377 firm-quarter observations. All continuous variables are winsorized at the 1st and 99th percentile. Table 1 reports the sample selection process.

TABLE 1SAMPLE SELECTION

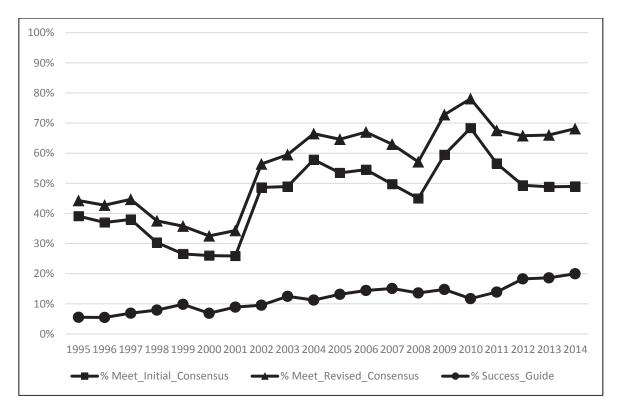
Number of point or range quarterly management earnings forecasts for the period from 1995 to 2014 from IBES Guidance Database	57,955
	(1.0.50)
Drop observations with no actual EPS data in IBES Detail Actual File	(1,058)
Keep management forecasts issued within one year of the forecast period end date	(622)
Keep only the last forecasts before the quarterly earnings announcement	(11,683)
Drop observations with less than 3 analyst initial forecasts issued within one year of the	(5,848)
management forecast date	
Total quarterly management forecasts included in the sample	38,744
Number of firms included in the sample	3,677
Total analyst initial forecasts included in the sample	440,282
Total analyst revised forecasts issued within 30 days of the management forecasts	272,550

Variable Definitions

We measure successful expectation management by examining whether actual earnings meet the initial analyst consensus and the revised analyst consensus. The dummy variable. Meet Initial Consensus, equals 1 if the actual EPS is higher than or equal to the mean of individual analysts' last forecasts issued before the management guidance, and 0 otherwise. We create another dummy variable, Meet Revised Consensus, which equals 1 if the actual EPS is higher than or equal to the mean of individual analysts' first revised forecasts issued within 30 days of the management guidance, and 0 otherwise. We use the dummy variable, Success Guide, to indicate successful expectation management cases. Success Guide equals 1 if the management issues a downward guidance and the actual earnings miss the initial analyst consensus but meet or beat the revised analyst consensus, and 0 otherwise.

To examine the temporal changes in managers' forecasting behaviors, we focus on the magnitude of management forecast bias. We calculate management forecast bias (MF_Bias) using the difference between management forecast and actual EPS. Positive (negative) values indicate upwardly (downwardly) biased management forecasts. We also compute the scaled management forecast bias (MF_Bias Scaled) using management forecast bias divided by the beginning-of-quarter stock price.

To study individual analysts' responses to management guidance, we code analyst responses as *No_Revision, Converge*, or *Deviate. No_Revision* is equal to 1 if the analyst does not announce any forecast revision within 30 days of the management forecast, and 0 otherwise. *Converge* is equal to 1 if the analyst revises his forecast in the same direction as the one suggested by the management forecast, and 0 otherwise. *Deviate* is equal to 1 if the analyst revises his forecast in the same direction as the one suggested by the management forecast, and 0 otherwise. *Deviate* is equal to 1 if the analyst revises his forecast in the direction opposite to the one suggested by the management forecast, and 0 otherwise. For example, if the management forecast is less than an individual analyst's forecast, the suggested revision is downward. In this case, *Converge* is equal to 1 if the revised analyst forecast is lower than the initial analyst forecast. On the other hand, if the management forecast is higher than an individual analyst's forecast is higher than an individual analyst forecast is higher than the initial analyst forecast. On the other hand, if the management forecast is equal to 1 if the revised analyst forecast is higher than the initial analyst forecast. In this case, *Converge* is equal to 1 if the revised analyst forecast is higher than an individual analyst's forecast. On the other hand, if the management forecast is higher than an individual analyst forecast is higher than the initial analyst forecast. In this case, *Converge* is equal to 1 if the revised analyst forecast is higher than individual analyst forecast is higher than an individual analyst forecast is higher than the initial analyst forecast.


Finally, we examine the impact of management forecast on analyst forecast accuracy. We first compare the forecast accuracy of management forecast with individual analysts' initial forecast. *MF_Better* is a dummy variable, which equals 1 if the absolute value of management forecast error is less than the absolute value of analyst initial forecast error, and 0 otherwise. We also measure the magnitude of the difference in forecast errors using *Relative_Err*, which is the difference between the absolute value of management forecast error. We also compute the scaled difference in forecast error (*Relative_Err_Scaled*) using *Relative_Err* divided by the beginning-of-

quarter stock price. In order to examine whether individual analysts sacrifice their forecast accuracy by converging to management guidance, we construct a dummy variable, *Worse*, which equals 1 if an analyst converges to the management guidance but the revised forecast is less accurate than the initial forecast, and 0 otherwise. Please see Appendix for the variable definitions.

MAIN RESULTS

Temporal Changes in Successful Expectation Management

Table 2 shows the temporal changes in successful expectation management from 1995 to 2014 through public management earnings forecasts. *Year* represents the calendar year of the period end date of the quarter for which the management forecasts earnings. Figure 1 presents the trend in graphical form. We document a significant change in the percentage of successful expectation management over the last 20 years. The percentage of firms missing initial analyst earning target but meeting revised analyst earnings target after downward management guidance have more than tripled from 5.5% in 1995 to 20.0% in 2014. Regressing the percentage of *Success_Guide* on *Year* shows that the percentage of successful expectation management has increased significantly over time (adjusted R-square =88%), with an average increase of 0.68% per year (significant at less than 1% level) as indicated by the slope coefficient.

Year	Ν	% Meet Initial	% Meet Revised	% Success_Guide
		_Consensus	_Consensus	_
1995	271	39.11%	44.28%	5.54%
1996	365	36.99%	42.74%	5.48%
1997	479	38.00%	44.68%	6.89%
1998	847	30.34%	37.54%	7.91%
1999	813	26.57%	35.79%	9.84%
2000	1,196	26.00%	32.53%	6.86%
2001	2,670	25.88%	34.31%	8.91%
2002	2,813	48.63%	56.42%	9.53%
2003	2,763	48.93%	59.50%	12.49%
2004	3,174	57.84%	66.48%	11.25%
2005	2,983	53.47%	64.63%	13.14%
2006	2,971	54.53%	67.01%	14.44%
2007	2,649	49.72%	62.97%	15.10%
2008	2,461	44.98%	57.13%	13.61%
2009	2,006	59.47%	72.78%	14.76%
2010	2,031	68.34%	78.09%	11.72%
2011	2,030	56.60%	67.54%	13.89%
2012	2,041	49.34%	65.80%	18.28%
2013	2,078	48.85%	66.03%	18.62%
2014	2,103	48.98%	68.14%	19.97%
All years	38,744	48.72%	60.15%	13.05%
Slope		0.0136	0.0195	0.0068
t-stat		3.86	5.96	12.08
Adj. R-				
Square		0.4221	0.6453	0.8841

TABLE 2EXPECTATION MANAGEMENT

Table 2 shows the temporal patterns of expectation management for the period from 1995 to 2014. We obtain the last management forecast for each quarter from IBES Guidance. We then obtain the last analyst forecast before the management forecast date and the first analyst revision after the management forecast date. Analyst consensus is computed before and after the management forecast date using the mean of all individual analysts' forecasts. *%Meet_Initial_Consensus* is the frequency of quarterly profits that meet or beat the analyst consensus forecast before the management forecast date. *%Meet_Revised_Consensus* is the frequency of quarterly profits that meet or beat the analyst consensus forecast before is the frequency of quarterly profits that meet or beat the revised analyst consensus and for which the management forecast is a downward guidance (i.e., successful expectation management using downward guidance). The slope and t-stat pertain to the slope coefficient of the univariate regression of the column variable on *Year*. The adjusted R-square pertains to this univariate regression.

Since the firm composition in our sample is changing over time, the increase in the percentage of successful expectation management may be a manifestation of changes in the characteristics of the underlying firms, management forecasts, or analyst forecasts, instead of the change of the intent behind

management and analyst forecasting behaviors. To address this concern, we run the following logistic regression in equation (1):

 $Success_Guide = a + b_1*Year + b_2*Reg_FD + b_3*SOX + b_4*Size + b_5*BTM + b_6*Lev + b_7*ROA + b_8*Loss + b_9*Analyst_Following + b_{10}*AF_Dispersion + b_{11}*AF_Optimism + b_{12}*Bundled_MF + b_{13}*MF_Time + Industry Dummies + e$ (1)

The coefficient of interest is b_1 . A positive coefficient indicates that the likelihood of successful expectation management through public management earnings forecasts increases over time after controlling for the various characteristics of the underlying firms, management forecasts, and analyst forecasts. In addition, we also include two dummy variables to capture the effects of Reg FD and SOX on expectation management. *Reg_FD* (*SOX*) equals 1 for management guidance issued after 2000 (2002) and 0 otherwise. A positive b2 (b3) is consistent with Reg FD (SOX) amplifying expectation management through management forecast.

Other control variables are as follows. *Size* is the natural log of the market value of the firm at the beginning of the quarter. *BTM* is the book value of equity divided by the market value of equity at the beginning of the quarter. *Lev* is total liabilities divided by total assets at the beginning of the quarter. *ROA* is income before extraordinary items divided by total assets at the beginning of the quarter. *Loss* is an indicator variable which equals 1 if the firm reports negative income before extraordinary items for the quarter and 0 otherwise. *Analyst_Following* is the number of analyst forecasts included in the calculation of analyst consensus before the management forecast. *AF_Dispersion* is the decile ranking of the standard deviation of analyst forecasts issued before the management forecast scaled by stock price at the beginning of the quarter. *Bundled_MF* is an indicator variable which equals 1 if the analgement forecast and actual earnings per share scaled by stock price at the beginning of the quarter. *Bundled_MF* is an indicator variable which equals 1 if the analgement forecast date. Industry dummies for each 2-digit SIC code are included to control for any time invariant effect of industries. Standard errors are clustered by industry.

Table 3 shows the results for the logistic regression. Column (1) reports the results without including the dummy variables for Reg FD and SOX. The coefficient on *Year* is positive and significant at less than 1% level (two-sided), indicating that the likelihood of successful expectation management using public management earnings forecasts increases over time. The magnitude of the increase, as suggested by the marginal effect, is about 0.76% each year. Column (2) reports the results including the dummy variables for Reg FD and SOX. We find a positive effect of SOX on expectation management, suggesting that expectation management is becoming increasingly popular in the era of tighter financial reporting regulations that restrict earnings management. We also find positive and statistically significant through public management guidance by restricting private communication channels between managers and analysts. The coefficient on *Year* remains positive and statistically significant, indicating that the temporal increase of expectation management through management forecast is not fully driven by Reg FD and SOX.

The coefficients on the control variables indicate that larger and growth firms are more likely to engage in expectation management. Firms reporting a loss in the quarter are less likely to use public management guidance to meet analyst expectations. It is more difficult for firms with more analyst followings and more disperse initial analyst forecasts to successfully management expectations. In addition, managements are more likely to use management forecasts to guide down analyst expectations when initial analyst forecasts are more optimistic. Bundled forecasts are more likely to result in successful expectation management possibly due to the increased attention received by these forecasts when issued together with earnings announcements. In an untabulated test, we include the interaction term of *Bundled MF* and *Year* in the regression. The coefficient on the interaction term is negative and

significant at less than 5% level (two-sided), indicating that successful expectation management through unbundled management forecast is showing a larger increase over time compared with bundled management forecast.

	(1) Success Cuide	(2) Success Carida
	Success_Guide	Success_Guide
Year	0.0739***	0.0476***
	(11.92)	(6.48)
	[0.0076]	[0.0049]
Reg_FD	[]	0.1983*
-0_		(1.94)
		[0.0203]
SOX		0.3986***
		(6.38)
		[0.0408]
Size	0.0741***	0.0772***
	(4.04)	(3.90)
	[0.0076]	[0.0079]
BTM	-0.2657***	-0.2757***
	(-3.61)	(-3.74)
	[-0.0273]	[-0.0282]
Lev	0.1335	0.1460
	(1.36)	(1.50)
	[0.0137]	[0.0150]
ROA	1.2871	1.1321
Ron	(1.57)	(1.47)
	[0.1320]	[0.1159]
LOSS	-0.3058***	-0.3041***
2055	(-3.69)	(-3.60)
	[-0.0314]	[-0.0311]
Analyst Following	-0.0200***	-0.0198***
Indiysi_1 ollowing	(-5.83)	(-6.24)
	[-0.0021]	[-0.0020]
AF Dispersion	-0.0687***	-0.0675***
III _Dispersion	(-8.12)	(-8.15)
	[-0.0070]	[-0.0069]
AF Optimism	0.3902***	0.3950***
	(43.14)	(43.63)
	[0.0400]	[0.0404]
Bundled MF	0.4991***	0.4452***
Dunuicu_111	(6.81)	(6.32)
	[0.0512]	[0.0456]
MF Time	-0.0000	-0.0001
	(-0.04)	(-0.17)
	[-0.000]	[-0.0000]
Observations	38,377	38,377
Pseudo R-squared	0.123	0.126
i seudo ix-squared	0.123	0.120

TABLE 3 LOGISTIC REGRESSION OF EXPECTATION MANAGEMENT

Table 3 presents estimation results for the logistic regression of *Success_Guide* on *Year. Success_Guide* is an indicator variable which equals 1 if the management issues a downward guidance and the actual earnings miss the initial analyst consensus but meet or beat the revised analyst consensus, and 0 otherwise. *Year* is the calendar year for the period end date of the quarter for which managers forecast earnings. Please see the Appendix for the definitions of variables. Industry dummies for each 2-digit SIC code is included. The numbers in parentheses represent z-statistics calculated using standard errors clustered by industry. The numbers in brackets represent marginal effects. ***, **, and * denote significance (two-tailed) at the 0.01, 0.05, and 0.10 levels, respectively.

Temporal Changes in Management Forecast Bias

Table 4 reports the temporal changes in management forecast bias. We find that management forecast becomes more pessimistically biased over time. While the mean (median) management forecast bias is -0.18 (-0.11) cent in 1995, it becomes -3.5 (-2.00) cents in 2014. The management forecast bias scaled by beginning-of-quarter stock price shows a similar trend. Regressing the mean and median management forecast bias on *Year* shows that the increasing trend of pessimistic bias in management guidance is statistically significant at less than 1% level.³

Year	Ν	MF_Bias	MF_Bias	MF_Bias_Scaled	MF_Bias_Scaled
		Mean	Median	Mean	Median
1995	271	-0.0018	-0.0011	-0.0001	-0.0002
1996	365	-0.0093	-0.0001	-0.0013	0.0000
1997	479	0.0049	0.0000	0.0004	0.0000
1998	847	-0.0027	0.0000	-0.0005	0.0000
1999	813	0.0080	0.0000	0.0022	0.0000
2000	1,196	0.0097	0.0000	0.0013	0.0000
2001	2,670	-0.0015	-0.0013	-0.0004	-0.0001
2002	2,813	-0.0113	-0.0100	-0.0005	-0.0005
2003	2,763	-0.0137	-0.0100	-0.0007	-0.0006
2004	3,174	-0.0171	-0.0100	-0.0008	-0.0007
2005	2,983	-0.0202	-0.0133	-0.0012	-0.0007
2006	2,971	-0.0206	-0.0150	-0.0015	-0.0007
2007	2,649	-0.0179	-0.0150	-0.0012	-0.0006
2008	2,461	-0.0114	-0.0100	0.0001	-0.0006
2009	2,006	-0.0387	-0.0250	-0.0039	-0.0019
2010	2,031	-0.0425	-0.0300	-0.0026	-0.0014
2011	2,030	-0.0335	-0.0200	-0.0016	-0.0008
2012	2,041	-0.0315	-0.0200	-0.0013	-0.0008
2013	2,078	-0.0324	-0.0200	-0.0015	-0.0007
2014	2,103	-0.0350	-0.0200	-0.0013	-0.0007
All years	38,744	-0.0193	-0.0100	-0.0010	-0.0006
Slope	-	-0.0023	-0.0014	-0.0001	-0.0001
t-stat		-7.30	-8.60	-3.00	-4.48
Adj. R-Square		0.7335	0.7933	0.2958	0.5012

TABLE 4MANAGEMENT FORECAST BIAS

Table 4 shows the temporal patterns of management forecast bias from 1995 to 2014. *MF_Bias* equals to the management forecast minus the actual earnings per share. *MF_Bias_Scaled* is *MF_Bias* divided by the stock price at the beginning of the quarter. The slope and t-stat pertain to the slope coefficient of the univariate regression of the column variable on *Year*. The adjusted R-square pertains to this univariate regression.

Temporal Changes in Analyst Responses to Management Forecasts

Even if managers issue downwardly biased forecasts, they may not necessarily drive down analyst expectations if analysts refuse to converge to the management forecasts. Therefore, we need to examine individual analysts' response to management guidance in order to show a more complete picture of expectation management. Table 5 presents the temporal changes in analyst responses to management forecasts. We observe a prominent increase from 28% in 1995 to 64% in 2014 in the percentage of analysts who choose to converge to management forecasts.

Year	Ν	% Converge	% Deviate	% No_Revision
1995	2,448	28.15%	1.23%	70.63%
1996	2,953	32.85%	1.22%	65.93%
1997	4,071	34.71%	1.42%	63.87%
1998	6,965	44.97%	1.23%	53.80%
1999	7,447	50.81%	1.67%	47.52%
2000	11,807	44.51%	1.55%	53.94%
2001	27,248	52.18%	1.86%	45.95%
2002	30,011	50.14%	2.52%	47.34%
2003	29,646	53.48%	2.73%	43.79%
2004	34,193	56.96%	3.92%	39.12%
2005	32,525	57.68%	4.00%	38.32%
2006	33,553	58.21%	4.93%	36.86%
2007	30,191	59.66%	5.49%	34.84%
2008	27,822	59.12%	4.76%	36.12%
2009	22,538	64.19%	5.14%	30.66%
2010	25,685	64.19%	5.76%	30.05%
2011	26,800	63.72%	6.12%	30.15%
2012	27,738	63.76%	4.81%	31.43%
2013	28,080	63.43%	4.80%	31.76%
2014	28,561	64.06%	4.54%	31.40%
All years	440,282	57.79%	4.12%	38.10%
Slope	-	0.0173	0.0028	-0.0203
t-stat		10.18	11.31	-11.36
Adj. R-Square		0.8437	0.8698	0.8709

 TABLE 5

 ANALYST REACTION TO MANAGEMENT FORECAST

Table 5 shows the temporal patterns of analyst reactions to management forecasts from 1995 to 2014. Each individual analyst's response is coded as *Converge, Deviate, or No_Revision*. If the analyst does not announce any forecast revision within 30 days of the management forecast, the response is coded as *No_Revision*. If the analyst revises his forecast in the same direction as the one suggested in the management forecast, the response is coded as *Converge*. If the analyst revises his forecast in the direction opposite to the one suggested in the management forecast, the response is coded as *Deviate*. The slope and t-stat pertain to the slope coefficient of the univariate regression of the column variable on *Year*. The adjusted R-square pertains to this univariate regression.

It is unclear whether analysts knowingly converge to biased management forecasts to make it easier for the managers to meet expectations or unintentionally rely more on management forecasts that become increasingly biased over time. Theoretically, analysts should be able to judge the quality of management forecasts from past track record. Prior studies find that managers establish a reputation from their prior earnings forecasts and that both investors and analysts adjust their responses to management forecasts based on previous track record (Williams 1996; Yang 2012). Thus, if analysts are not intentionally cooperating with managers, we should not observe greater increases in analyst convergence for firms with poor historical track record. We calculate the average forecast bias (MF_Bias) for the last management forecast issued for each quarter during the last three years. We then sort the sample based on the decile rank of the average management forecast bias. We compare the temporal changes of analysts' convergence to management forecasts across the ten groups. This temporal analysis covers the period from 1998 to 2014. The first three years of observations (1995-1997) in our sample are dropped because we need to use management forecasts in the last three years to establish the prior track record.

Panel A of Table 6 provides the range of average management forecast bias for the ten groups. More than 80% of firms have an average downward bias for forecasts made within the last three years. Panel B of Table 6 shows the temporal change of the percentage of analysts who converge to management forecasts for the ten groups. The slope coefficient, t-statistics, and adjusted R-square for the regression of analyst convergence percentage on *Year* is provided at the bottom of the table. We also test the difference between the slope coefficient of the lowest decile (largest downward bias) and other decile groups. The evidence reveals a greater increase in analyst convergence for firms with a record of larger downward bias in their prior management forecasts. For example, while percentage of analyst convergence for the most pessimistically biased management guidance increases by 31% from 1998 to 2014, it only increases by 3% for the management forecast with the least downward bias. The above analyses indicate that part of the temporal shift in successful expectation management is due to the increasing number of analysts that choose to converge to more downwardly biased management forecast. The evidence also suggests that analysts seem to cooperate with managers in expectation management.

Panel A: R	ange of A	Average N	Aanagem	ent Fore	cast Bias					
Decile	1	2	3	4	5	6	7	8	9	10
Ranking										
Minimum	-0.140	-0.060	-0.040	-0.029	-0.021	-0.015	-0.010	-0.006	-0.002	0.004
Maximum	-0.060	-0.040	-0.029	-0.021	-0.015	-0.010	-0.006	-0.002	0.004	0.065
Panel B: P	ercentage	e of Analy	yst Conve	ergence						
			Decile l	Ranking c	of Average	e Manage	ment Fore	ecast Bias		
Year	1	2	3	4	5	6	7	8	9	10
1998	37%	38%	40%	41%	53%	49%	48%	43%	45%	59%
1999	43%	58%	62%	53%	43%	64%	59%	49%	51%	48%
2000	57%	49%	52%	41%	50%	47%	46%	43%	40%	44%
2001	52%	47%	52%	53%	55%	54%	53%	57%	51%	51%
2002	48%	52%	47%	50%	54%	49%	51%	48%	51%	51%
2003	51%	54%	58%	52%	57%	55%	55%	51%	52%	53%
2004	54%	59%	58%	60%	59%	57%	57%	59%	54%	55%
2005	63%	63%	59%	61%	55%	56%	55%	59%	55%	57%
2006	65%	64%	61%	59%	58%	58%	57%	55%	56%	54%
2007	65%	62%	60%	58%	60%	58%	58%	57%	56%	59%
2008	65%	61%	60%	61%	59%	58%	59%	57%	56%	54%
2009	68%	66%	68%	65%	64%	66%	60%	65%	57%	60%
2010	66%	64%	69%	63%	60%	64%	62%	62%	68%	65%
2011	63%	66%	64%	66%	63%	63%	60%	60%	62%	62%
2012	67%	64%	63%	65%	64%	64%	63%	62%	62%	61%
2013	66%	66%	64%	64%	65%	61%	61%	58%	56%	61%

 TABALE 6

 PAST MANAGEMENT FORECAST BIAS AND ANALYST CONVERGENCE

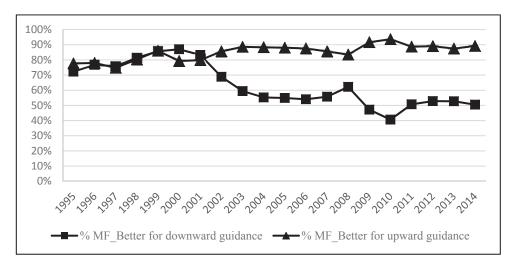
2014	68%	65%	68%	63%	66%	60%	64%	59%	60%	62%
Average	63%	63%	62%	61%	60%	58%	57%	56%	53%	55%
Slope	0.0163	0.0135	0.0118	0.0136	0.0105	0.0076	0.0084	0.0101	0.0106	0.0084
t-stat	6.71	5.78	4.87	6.81	7.74	3.48	5.72	5.02	5.66	4.54
Adj. Rsq	0.7333	0.6696	0.5866	0.7392	0.7863	0.4092	0.6650	0.6018	0.6600	0.5502
P-value (co with the 1 st	1	0.3586	0.2011	0.3618	0.0439	0.0109	0.0081	0.0557	0.0670	0.0153

Table 6 shows how prior management forecast bias affects analyst responses from 1998 to 2014. We calculate the average management forecast bias using the last management forecast issued for each quarter during the last three years. We divide the sample into ten groups based on decile rank of the average management forecast bias. Panel A reports the range of average management forecast bias for the ten groups. Panel B shows the temporal change in the percentage of analysts that converge to management forecasts according to the decile rank of prior management forecast bias. The slope and t-stat pertain to the slope coefficient of the univariate regression of percentage of *Converge* in a column on *Year*. The adjusted R-square pertains to this univariate regression. The p-value pertains to the test for the difference between the slope coefficient in a given column and the slope coefficient for the first decile.

The Impact of Management Forecast on Analyst Forecast Accuracy

If more and more analysts converge to downwardly biased management forecasts, it raises concerns about the impact of these management forecast on analyst forecast accuracy. If the management forecast is still more accurate than analyst forecast despite of the downward bias, analyst won't sacrifice their accuracy by converging to the downwardly biased management forecast. Table 7 reports the relative accuracy of management forecast compared with individual analysts' forecast before the issuance of management forecast. Panel A of Table 7 reports the relative accuracy for downward guidance. The percentage of management forecasts that are more accurate than the individual analysts' forecasts decreases from 72% in 1995 to 51% in 2014. We also compare the magnitude of relative accuracy of management forecast and individual analyst' forecasts, measured as the difference between the absolute value of management forecast error and analyst forecast error. The mean (median) difference in forecast errors is -6.73 (-1.50) cents in 1995 but declines to -3.16 (0.00) cents in 2014. The evidence suggests that for downward guidance, the management forecast is becoming less informative and has almost no advantage over individual analysts' forecasts in terms of forecast accuracy in 2014. Panel B of Table 7 reports the relative accuracy for upward guidance. The percentage of management forecasts that are more accurate than the individual analysts' forecasts increases from 78% in 1995 to 89% in 2014. The mean (median) difference in forecast errors is -1.40 (-0.50) cents in 1998, and it increases to -4.17 (-2.00) cents in 2014. The evidence suggests that for upward guidance, the management forecast is becoming more informative and has larger advantage over individual analyst forecast in forecast accuracy.

 TABLE 7


 RELATIVE ACCURACY OF MANAGEMENT FORECAST AND ANALYST FORECAST

Panel A:	Downwar	d Guidance				
Year	Ν	MF_better	Relative_Err	Relative_Err	Relative_Err_Scaled	Relative_Err_Scaled
			Mean	Median	Mean	Median
1995	1,641	72.27%	-0.0673	-0.0150	-0.0070	-0.0029
1996	2,012	76.74%	-0.0702	-0.0250	-0.0069	-0.0024
1997	2,678	75.84%	-0.1137	-0.0355	-0.0082	-0.0032
1998	5,004	81.41%	-0.1166	-0.0500	-0.0075	-0.0032
1999	5,357	85.72%	-0.1343	-0.0750	-0.0086	-0.0038
2000	8,317	87.00%	-0.1480	-0.0750	-0.0085	-0.0040
2001	20,305	83.28%	-0.1439	-0.0600	-0.0068	-0.0025
2002	18,187	68.87%	-0.0643	-0.0200	-0.0046	-0.0013
2003	18,296	59.47%	-0.0478	-0.0100	-0.0035	-0.0006
2004	18,926	55.26%	-0.0429	-0.0050	-0.0024	-0.0003
2005	19,737	54.87%	-0.0399	-0.0050	-0.0016	-0.0002
2006	20,685	54.03%	-0.0421	-0.0050	-0.0015	-0.0002
2007	19,218	55.73%	-0.0488	-0.0075	-0.0017	-0.0003
2008	18,312	62.21%	-0.0694	-0.0150	-0.0035	-0.0007
2009	12,879	47.17%	-0.0393	0.0000	-0.0032	0.0000
2010	12,996	40.66%	-0.0178	0.0050	-0.0008	0.0002
2011	16,602	50.71%	-0.0458	0.0000	-0.0021	0.0000
2012	18,822	52.82%	-0.0368	-0.0050	-0.0018	-0.0001
2013	19,630	52.74%	-0.0327	-0.0050	-0.0016	-0.0001
2014	19,771	50.51%	-0.0316	0.0000	-0.0012	0.0000
Average	279,375	59.28%	-0.0580	-0.0100	-0.0031	-0.0005
Slope		-0.0199	0.0047	0.0028	0.0004	0.0002
t-stat		-6.26	4.01	3.62	7.23	6.76
Adj. Rsq		0.6679	0.4431	0.3897	0.7298	0.7018
	Upward G		Dalating From	Dalating From	Deletine For Center	Delutive For Couled
Year	Ν	MF_better	Relative_Err	Relative_Err	Relative_Err_Scaled	Relative_Err_Scaled
1005	007	77.700/	Mean	Median	Mean	Median
1995	807	77.70%	-0.0140	-0.0050	-0.0023	-0.0011
1996	941	78.00%	-0.0283	-0.0050	-0.0028	-0.0008
1997	1,393	74.80%	-0.0120	-0.0050	-0.0018	-0.0007
1998	1,961	80.37%	-0.0216	-0.0075	-0.0033	-0.0008
1999	2,090	86.03%	-0.0276	-0.0168	-0.0038	-0.0015
2000	3,490	79.28%	-0.0453	-0.0200	-0.0035	-0.0010
2001	6,943	79.86%	-0.0600	-0.0150	-0.0033	-0.0009
2002	11,824	85.67%	-0.0372	-0.0150	-0.0028	-0.0010
2003	11,350	88.60%	-0.0284	-0.0150	-0.0027	-0.0009
2004	15,267	88.36%	-0.0367	-0.0150	-0.0023	-0.0009
2005	12,788	88.04%	-0.0357	-0.0150	-0.0019	-0.0007
2006	12,868	87.57%	-0.0393	-0.0200	-0.0020	-0.0008
2007	10,973	85.61%	-0.0322	-0.0150	-0.0017	-0.0007
2008	9,510	83.51%	-0.0409	-0.0200	-0.0020	-0.0008
2009	9,659	91.65%	-0.0548	-0.0300	-0.0041	-0.0018
2010	12,689	93.65%	-0.0600	-0.0300	-0.0029	-0.0013
2011	10,198	88.78%	-0.0478	-0.0200	-0.0020	-0.0008
2012	8,916	89.04%	-0.0462	-0.0200	-0.0021	-0.0007
2013	8,450	87.50%	-0.0447	-0.0200	-0.0019	-0.0006

2014	8,790	89.16%	-0.0417	-0.0200	-0.0015	-0.0005
Average	160,907	87.37%	0.0416	-0.02	-0.0024	-0.0009
Slope		0.0069	-0.0015	-0.0009	0.0000	0.0000
t-stat		5.54	-3.70	-5.06	1.75	0.77
Adj. Rsq		0.6099	0.4003	0.5643	0.0984	0.0318

Table 7 shows the temporal patterns of the relative accuracy of management forecasts and individual analyst forecasts from 1995 to 2014. *MF_Better* equals 1 if the absolute value of the management forecast error is less than the absolute value of forecast error of individual analyst's last forecast issued before the management forecast, and 0 otherwise. *Relative_Err* equals the difference between the absolute value of management forecast error and analyst forecast error. *Relative_Err_Scaled* equals *Relative_Err* scaled by beginning-of-quarter stock price. Panel A and Panel B report the results for downward and upward management guidance, respectively. The slope and t-stat pertain to the slope coefficient of the univariate regression of the column variable on *Year*. The adjusted R-square pertains to this univariate regression.

FIGURE 2 RELATIVE ACCURACY OF MANAGEMENT FORECAST AND ANALYST FORECAST

The results in Table 7 show that there is decreasing informativeness of downward management guidance relative to individual analysts' forecasts, which casts doubt on the accuracy of analyst forecast revisions. Therefore, we examine the consequence of analyst convergence to management guidance in terms of forecast accuracy. Table 8 reports the percentage of analysts who converge to management forecasts at the expense of their forecast accuracy. Worse is an indicator variable which equals 1 if an individual analyst converges to management forecast but the revised forecast is less accurate than the initial forecast, and 0 otherwise. About 5% of analysts issue a revised forecast that is less accurate than their initial forecast by converging to the management forecasts in 1995. The frequency increases to 29% in 2014. If we look at upward and downward guidance separately, the percentage of analysts who sacrifice forecast accuracy increases by 32% from 6% in 1995 to 38% in 2014 by converging to downward guidance. On the other hand, the 7% increase of less accurate revised forecast due to convergence to upward guidance is much smaller, consistent with the findings in Table 7 that upward guidance is generally more informative than downward guidance. When viewed as a whole, the results suggest that an increasing number of analysts are converging to downwardly biased management guidance which are less accurate than their own initial forecasts. This results in more successful expectation management through public management forecasts at the cost of compromised analyst forecast accuracy.

Year	Ν	% Worse	% <i>Worse</i> for	% <i>Worse</i> for
			Downward Guidance	Upward Guidance
1995	689	5.37%	6.00%	1.12%
1996	970	5.15%	5.84%	1.82%
1997	1,413	4.53%	4.58%	4.27%
1998	3,132	5.68%	5.92%	4.52%
1999	3,784	5.44%	5.95%	3.67%
2000	5,255	7.27%	7.98%	4.75%
2001	14,219	9.78%	10.41%	7.11%
2002	15,048	13.77%	19.23%	4.77%
2003	15,856	17.64%	25.69%	4.33%
2004	19,478	16.96%	27.71%	4.97%
2005	18,760	20.91%	30.60%	6.15%
2006	19,531	23.40%	34.11%	6.17%
2007	18,013	23.01%	31.48%	7.80%
2008	16,447	22.67%	29.39%	8.10%
2009	14,468	25.26%	42.85%	4.29%
2010	16,488	22.05%	44.39%	3.48%
2011	17,078	24.75%	36.51%	6.92%
2012	17,687	26.64%	36.26%	6.11%
2013	17,812	27.57%	35.73%	7.29%
2014	18,297	28.78%	37.86%	7.17%
Average	254,425	20.93%	29.46%	5.80%
Slope		0.0143	0.0221	0.0022
t-stat		15.43	10.41	3.86
Adj. Rsq		0.9258	0.8497	0.4231

 TABLE 8
 ANALYST CONVERGENCE AND WORSE REVISED FORECASTS

Table 8 shows the temporal patterns of the consequence of converging to management forecasts from 1995 to 2014. % *Worse* is the frequency of converging analyst forecast revisions that are less accurate compared with the initial analyst forecasts. % *Worse* Downward Guidance (Upward Guidance) is the frequency of analyst forecast revisions converging to downward (upward) management guidance that result in less accurate analyst forecasts compared with the analysts' initial forecasts. The slope and t-stat pertain to the slope coefficient of the univariate regression of the column variable on *Year*. The adjusted R-square pertains to this univariate regression.

Given the importance of forecast accuracy to analysts' career (Brown, Call, Clement, and Sharp, 2015), analysts bear significant costs by converging to downward guidance and cooperating with the management in expectation management. Prior literature has shown that analysts issue biased forecasts to win underwriting business (Lin and McNichols, 1998; Feng and McVay, 2010). Even though regulators have been trying to reduce the conflict of interest faced by analysts during the last 20 years, Brown et al. (2015) find, based on their survey data, that analysts still view generating underwriting business as an important compensation source. Therefore, the increasing number of analysts that cooperate with managers in expectation management might be due to more analysts having incentives to generate underwriting business.

Underwriting syndicate has become larger and larger over time. Creating more analyst coverage is one of the primary reasons for using more co-underwriters for equity offerings (Jo, et al., 2012; Corwin and Shultz, 2005). Figure 3 shows the temporal changes in the average number of underwriters in IPOs and SEOs for our sample firms. We obtain underwriter information for IPOs and SEOs from SDC

Database. The results reveal that the average number of co-underwriters in an IPO or SEO triples from 1995 to 2014. While IPOs (SEOs) on average have 2.31 (1.67) co-underwriters in 1995, the average number of co-underwriters increases to 7.86 (4.80) in 2014. As a result, there is more research coverage in recent years from affiliated analysts, who may have higher incentives to please managers in return for good relationships, leading to more analysts converging to management forecasts (Feng and McVay, 2010).We are unable to perform direct tests to compare analyst response to management forecast for affiliated analysts because IBES no longer provides the data file to translate the broker masked ID into broker name. Nevertheless, the increased analyst coverage from affiliated analysts due to the increase in the size of underwriting syndicate could be one of the explanations for the documented change in analyst behavior.

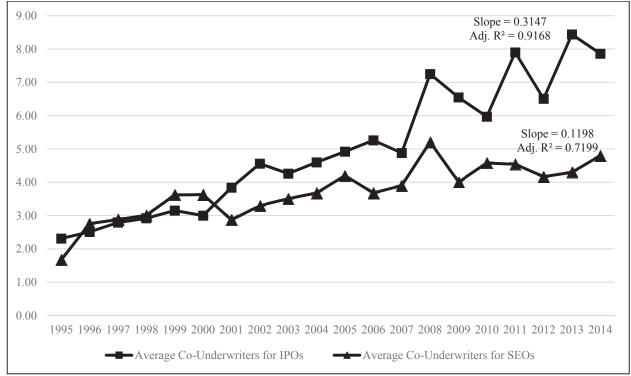


FIGURE 3 TEMPORAL CHANGES IN THE NUMBER OF CO-UNDERWRITERS

Figure 3 shows the temporal changes of the average number of co-underwriters in security issuance from 1995 to 2014. Average co-underwriters for IPOs relate the mean number of co-underwriters for initial public offerings to the year of the offerings. Average co-underwriters for SEOs relate the mean number of co-underwriters for seasoned equity offerings to the year of the offerings. Each line contains the slope coefficient and the adjusted R-square of the regression of the average co-underwriters in a given year on *Year*.

CONCLUSIONS

Using a sample of 38,744 quarterly management forecasts from 1995 and 2014, we document a large increase in successful expectation management through public management forecasts. While only 5.5% of quarterly management forecasts turn a missing analyst forecast quarter into a meeting analyst forecast quarter in 1995, the frequency increases to 20% in 2014. Further analyses reveal that this temporal pattern is due to both increasing downward bias in management forecasts and greater analyst convergence to management forecasts. Our evidence also suggests that more analysts converge to downwardly biased management forecasts and sacrifice their forecast accuracy, possibly due to the fact that more affiliated analysts trying to curry favor with management to win underwriting business.

The results indicate that although increasing regulation of financial reporting and corporate governance may alleviate earnings management (Cohen et al. 2008; Koh et al. 2008), an increasing number of managers may resort to expectation management in order to meet earnings expectations. In addition, our evidence also suggests that the series of regulation passed in the early 2000s, such as Section 501 of the Sarbanes-Oxley Act of 2002, Regulation Analyst Certification of 2003, and Global Research Analyst Settlement of 2003, might not be producing the anticipated effects of curbing the conflict of interest analysts face between providing accurate earnings forecasts and generating investment banking businesses. Nevertheless, we want to point out that this study only examines expectation management through publicly announced management earnings forecasts. There can be private communications or public communications other than management earnings forecasts that firms can use to manage market expectations.

ENDNOTES

- 1. Based on their survey evidence, Brown et al (2015) also reveal that this conflict of interest is a persistent concern. Our study provides supportive empirical evidence.
- 2. We also examine alternative time windows including (-90, +30) and (-30, +10), and the results remain qualitatively similar.
- 3. In Table 4, we observe a prominent spike in downward management forecast bias in 2009 and 2010. The sudden increase in management forecast pessimism may result from more conservative projections after the financial crisis of 2007-2008.

REFERENCES

- Baik, B., & Jiang, G. (2006). The use of management forecasts to dampen analysts' expectations. *Journal* of Accounting and Public Policy, 25(5), 531-553.
- Bartov, E., & Cohen, D. A. (2009). The "numbers game" in the pre-and post-Sarbanes-Oxley eras. *Journal of Accounting, Auditing & Finance*, 24(4), 505-534.
- Bartov, E., Givoly, D., & Hayn, C. (2002). The rewards to meeting or beating earnings expectations. *Journal of Accounting and Economics*, 33(2), 173-204.
- Brown, L. D. (2001). A temporal analysis of earnings surprises: Profits versus losses. *Journal of Accounting Research*, 39(2), 221-241.
- Brown, L. D., & Caylor, M. L. (2005). A temporal analysis of quarterly earnings thresholds: Propensities and valuation consequences. *The Accounting Review*, 80(2), 423-440.
- Brown, L. D., & Higgins, H. N. (2001). Managing earnings surprises in the US versus 12 other countries. *Journal of Accounting and Public Policy*, 20(4-5), 373-398.
- Brown, L. D., & Higgins, H. N. (2005). Managers' forecast guidance of analysts: International evidence. *Journal of Accounting and Public Policy*, 24(4), 280-299.
- Brown, L. D., Call, A. C., Clement, M. B., & Sharp, N. Y. (2015). Inside the "black box" of sell-side financial analysts. *Journal of Accounting Research*, 53(1), 1-47.
- Burgstahler, D., & Eames, M. (2006). Management of earnings and analysts' forecasts to achieve zero and small positive earnings surprises. *Journal of Business Finance & Accounting*, 33(5-6), 633-652.
- Cohen, D. A., Dey, A., & Lys, T. Z. (2008). Real and accrual-based earnings management in the pre-and post-Sarbanes-Oxley periods. *The Accounting Review*, 83(3), 757-787.
- Corwin, S. A., & Schultz, P. (2005). The role of IPO underwriting syndicates: Pricing, information production, and underwriter competition. *The Journal of Finance*, 60(1), 443-486.
- Cotter, J., Tuna, I., & Wysocki, P. D. (2006). Expectations management and beatable targets: How do analysts react to explicit earnings guidance? *Contemporary Accounting Research*, 23(3), 593-624.
- Degeorge, F., Patel, J., & Zeckhauser, R. (1999). Earnings management to exceed thresholds. *The Journal* of Business, 72(1), 1-33.
- Feng, M., & McVay, S. (2010). Analysts' incentives to overweight management guidance when revising their short-term earnings forecasts. *The Accounting Review*, 85(5), 1617-1646.
- Gryta, T., Ng, S., & Francis, T. (2016, August 4). Companies Routinely Steer Analysts to Deliver Earnings Surprises. *The Wall Street Journal*.
- Jo, H., Kim, Y., & Shin, D. (2012). Underwriter syndication and corporate governance. *Review of Quantitative Finance and Accounting*, 38(1), 61-86.
- Kahneman, D., & Tversky, A. (1979). On the interpretation of intuitive probability: A reply to Jonathan Cohen. *Cognition*, 7(4), 409-411.
- Koh, K., Matsumoto, D. A., & Rajgopal, S. (2008). Meeting or beating analyst expectations in the postscandals world: Changes in stock market rewards and managerial actions. *Contemporary* Accounting Research, 25(4), 1067-1098.
- Kross, W. J., & Suk, I. (2012). Does Regulation FD work? Evidence from analysts' reliance on public disclosure. *Journal of Accounting and Economics*, 53(1-2), 225-248.
- Leuz, C., Nanda, D., & Wysocki, P. D. (2003). Earnings management and investor protection: an international comparison. *Journal of Financial Economics*, 69(3), 505-527.
- Libby, R., Hunton, J. E., Tan, H. T., & Seybert, N. (2008). Relationship Incentives and the Optimistic/Pessimistic Pattern in Analysts' Forecasts. *Journal of Accounting Research*, 46(1), 173-198.
- Lin, H. W., & McNichols, M. F. (1998). Underwriting relationships, analysts' earnings forecasts and investment recommendations. *Journal of Accounting and Economics*, 25(1), 101-127.
- Matsumoto, D. A. (2002). Management's incentives to avoid negative earnings surprises. *The Accounting Review*, 77(3), 483-514.

- Richardson, S., Teoh, S. H., & Wysocki, P. D. (2004). The walk-down to beatable analyst forecasts: The role of equity issuance and insider trading incentives. *Contemporary Accounting Research*, 21(4), 885-924.
- Securities and Exchange Commission (SEC). (2003). *Regulation analyst certification (Regulation AC)*. 17 CFR part 242; release nos. 33-8193 and 34-47384. Retrieved from http://www.sec.gov/rules/final/33-8193.htm.
- Securities and Exchange Commission (SEC). (2003). SEC Fact Sheet on Global Analyst Research Settlements. Available online at https://www.sec.gov/news/speech/factsheet.htm.
- Skinner, D. J., & Sloan, R. G. (2002). Earnings surprises, growth expectations, and stock returns or don't let an earnings torpedo sink your portfolio. *Review of Accounting Studies*, 7(2-3), 289-312.
- Tan, H. T., Libby, R., & Hunton, J. E. (2010). When do analysts adjust for biases in management guidance? Effects of guidance track record and analysts' incentives. *Contemporary Accounting Research*, 27(1), 187-208.
- U.S. House of Representatives. (2002). *Sarbanes-Oxley Act of 2002*. Washington, DC: Government Printing Office.
- Vickers, M., (1999). Another earnings surprise. Business Week, (May 24), 83-84.
- Williams, P. A. (1996). The relation between a prior earnings forecast by management and analyst response to a current management forecast. *The Accounting Review*, 71(1), 103-113.
- Yang, H. I. (2012). Capital market consequences of managers' voluntary disclosure styles. *Journal of Accounting and Economics*, 53(1-2), 167-184.

APPENDIX

VARIABLE DEFINITIONS

Meet Initial Consensus	An indicator variable which equals 1 if the actual earnings meet or
	beat the analyst initial consensus before the management forecast
	date, and 0 otherwise.
Meet Revised Consensus	An indicator variable which equals 1 if the actual earnings meet or
	beat the revised analyst consensus after the management forecast
	date, and 0 otherwise.
Success_Guide	An indicator variable which equals 1 if the management issues a
	downward guidance, and the actual earnings miss the initial analyst
	consensus but meet or beat the revised analyst consensus after the
	guidance, and 0 otherwise.
Year	The calendar year of the period end date for which management
	forecasts earnings.
Reg_FD	Equals 1 if the management forecast date is after October 23, 2000
	and 0 otherwise.
SOX	Equals 1 if the management forecast is issued after 2002 and 0
	otherwise.
Size	The natural log of the market value of the firm at the beginning of the
	quarter.
BTM	The book value of equity divided by the market value of equity at the
	beginning of the quarter.
Lev	Total liabilities divided by total assets at the beginning of the quarter.
ROA	Income before extraordinary items divided by total assets at the
	beginning of the quarter.
Loss	Equals 1 if the firm reports negative income before extraordinary
	items for the quarter and 0 otherwise.
Analyst_Following	The number of analyst forecasts included in the calculation of initial
	analyst consensus for the quarter.
AF_Dispersion	The decile ranking of the standard deviation of analyst forecasts
	issued before the management forecast scaled by stock price at the
	beginning of the quarter.
AF_Optimism	The decile ranking of the difference between initial analyst consensus
	and actual earnings per share scaled by stock price at the beginning of
	the quarter.
Bundled_MF	Equals 1 if the management forecast is issued on the same day of an
ME Time	earnings announcement and 0 otherwise.
MF_Time	The difference between actual earnings announcement date and
ME Diag	management forecast date.
MF_Bias	Management forecast - Actual EPS
MF_Bias_Scaled	(Management forecast - Actual EPS)/ Beginning-of-quarter stock
Downward Cuidance	price An indicator variable which equals 1 if the management forecast is
Downward_Guidance	less than the individual analyst's forecast before the management
	forecast, and 0 otherwise.
Converge	An indicator variable which equals 1 if the analyst revises his forecast
Converge	in the same direction as the one suggested by management forecast,
	and 0 otherwise.

Deviate	An indicator variable which equals 1 if the analyst revises his forecast
	in the direction opposite to that suggested by management forecast,
	and 0 otherwise.
No_Revision	An indicator variable which equals 1 if the analyst does not announce
	any forecast revision within 30 days of the management forecast, and
	0 otherwise.
MF_Better	Equals 1 if the absolute value of the management forecast error is less
	than the absolute value of forecast error of individual analyst's last
	forecast issued before the management forecast, and 0 otherwise.
Relative_Err	The difference between the absolute value of management forecast
	error and analyst forecast error.
Relative_Err_Scaled	Relative_Err scaled by beginning-of-quarter stock price.
Worse	An indicator variable which equals 1 if an analyst converges to the
	management guidance but the revised forecast is less accurate than
	the initial forecast, and 0 otherwise.