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In this study we suggest an original non-linear corporate credit risk model that accounts for the complete 
distributional properties of common observed risk modules and their corresponding estimated default 
threshold values. The proposed model predicts corporate bankruptcies based on the consequential 
interrelationships within these credit components. We illustrate the theory over a large sample of 
observations and further authenticate its added value when predicting business failures. Despite the 
relatively higher complexity involved, compared to linear credit scores or scorecards, the present scheme 
can serve financial institutions and other lenders to make superior lending decisions and achieve higher 
overall profitability. 
 
INTRODUCTION 
 

Customary external credit scores as well as banks’ internal scorecards typically assess the credit 
quality of borrowing firms by examining pertinent accounting measures including size, profitability, 
leverage, liquidity, solvency, interest coverage, asset quality, investment activity, growth rate, dividend 
payout, financing results, various market quantities of equity price, return, and volatility patterns, and 
macroeconomic variables including unemployment rate, Gross Domestic Product (GDP) growth rate, 
inflation level, and credit spread over U.S. Treasury bonds.1 These common credit estimation 
methodologies are normally structured through discriminant analyses, logistic regressions, or alternative 
linear econometric techniques. Nonetheless, all these credit forecasting schemes endure collective 
drawbacks, as described hereafter.  

First, these linear predictive tools must refute multicollinearity, thus they all implicitly assume 
independent configurations of the credit components within. In reality, however, the credit elements are 
correlated to one another, because the same macroeconomic factors simultaneously shape many of them. 
For instance, reduced profitability naturally leads to depressed stock prices. Higher leverage often triggers 
intensified interest coverage rates. A downturned economic cycle typically prompts lower investment 
activity. Smaller firms usually hold inferior assets, and a poor measure of solvency is habitually 
associated with lower dividend payout. A more realistic credit model must consider these and other 
interrelationships among the relevant credit components.  

Second, ordinary credit estimation methods categorize borrowers with quantifiable scores. Then, 
financial institutions further assign lending rates based on the mean values of these scores, regardless of 
other valuable statistical characteristics of these measures. Different firms, however, can reach 
bankruptcy thresholds at diverse credit scores, and the full distributional properties of the underlying 
credit components and the potential break points are essential input when predicting business failures. 
Moreover, the creditworthiness of two firms having the exact same credit score could be substantially 
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different if credit components of one are more volatile than credit modules of the other. Observed 
variability in the fundamental credit ingredients that eventually compose the complete credit score 
evidently affects the firm’s ultimate probability of default (𝑃𝐷), since the likelihoods to reach bankruptcy 
thresholds can vary in this case. Furthermore, these corporate break points may have their own 
disseminations depending on idiosyncratic as well as macroeconomic factors.  

In this study, we aim to triumph over the above obstacles and present a stochastic risk model, which 
allows us to accommodate different statistical merits of correlated observed credit components and 
distributional characteristics of estimated bankruptcy threshold values in different economic 
circumstances. However, the current theory does not require us to explicitly compute any correlation 
coefficients among the underlying credit modules.2 Instead, we utilize several dispersion properties of the 
underlying credit components and the likely bankruptcy threshold values. The feasible intersections of 
these respective distributions are the sources of dependency in our proposed credit model.  

The current stochastic model is certainly more complex than existing linear credit scores and other 
applied scorecards in use. However, since the proposed theory relies upon observed accounting 
statements, it is indeed measurable, verifiable, and programmable. Thus, the suggested theory can serve a 
large spectrum of lenders that desire to achieve a higher predictive strength than existing linear credit 
scores towards likely corporate bankruptcies. The present scheme becomes exceedingly usable since it 
evolves from highly realistic assumptions and concrete statistical concepts. It can, therefore, assist 
financial institutions, banks, and other lenders to make healthier lending decisions and achieve higher 
overall profitability.  
 
THE MODEL 
 

We consider a universal paradigm where a lender utilizes a credit score, which contains 𝑛 
components that evidently determine the creditworthiness of the borrower.3 The different credit modules 
typically include quantitative measures such as accounting ratios, market variables, and macroeconomic 
parameters, but in general, these credit components may also incorporate qualitative estimations of 
management quality, marketing strength, growth prospects, or any other quantifiable soft information.  

For each credit component, we can collect its tangible measure 𝛼 and further identify its failure 
threshold value 𝛽. Tangible measures 𝛼𝑖 naturally comprise observed past and present records of each 
credit component 𝑖 ∈ {1,2, …𝑛}. The cutoff-points 𝛽𝑖 denote estimated critical quantities that label the 
area in which the underlying borrowing firm would presumably file for bankruptcy Chapter 11 
reorganization.4 These appraisals are typically collected from prior bankrupt firms within the relevant 
industry, and when available, from defaulted firms that had (prior to their failures) similar financial 
characteristics to those of the borrowing firm under investigation. Nevertheless, in reality, these 
parameters are not fixed. Instead, we allow them to be random variables with Probability Density 
Functions (PDF), 𝜉(𝛼) and 𝜓(𝛽), respectively.  

By definition, bankruptcy may occur whenever a current measure of a credit module 𝛼 falls below its 
estimated bankruptcy threshold value 𝛽, thus a credit component-related probability of default is:  

 
𝑃𝐷𝐶𝑜𝑚𝑝 = 𝑃(𝛼 < 𝛽).  (1) 

 
In this case, a credit module-related probability of default is a random variable by itself. We can 

further describe this probability as a function of the bankruptcy threshold value 𝛽 within small intervals 
of width 𝑑𝛼 as follows:  

 
𝑃(𝛽) = ∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ .  (2) 
 

The realization of a default probability 𝑃(𝛽) distinctively corresponds to a specific bankruptcy 
threshold value 𝛽. Furthermore, the likelihood for a credit component-related probability of default being 
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equal to 𝑃(𝛽) is equivalent to the chances for a bankruptcy threshold value being equal to 𝛽. More 
formally we define  
 

𝜗�𝑃(𝛽)�𝑑𝑃 = 𝜓(𝛽)𝑑𝛽,  (3) 
 
where 𝜗�𝑃(𝛽)� is the PDF of the credit component-related probability of a default random variable 𝑃(𝛽). 
As a function of a continuous random variable, the likelihood for the credit component-related conditional 
probability of default is differentiable and strictly monotonic function over some interval. Furthermore, it 
has a PDF in the form  
 

𝜗�𝑃(𝛽)� = 𝜓�𝑃−1(𝛽)� 𝜕𝑃
−1(𝛽)
𝜕𝑃

, (4) 
 
where 𝑃−1(𝛽) ≝ 𝛽(𝑃), hence it is the inverse function of 𝑃(𝛽).5  

In this setting, ∫ 𝜗�𝑃(𝛽)�𝑑𝑃1
0 = 1, hence 𝜗�𝑃(𝛽)� is a valid PDF over the feasible domain [0,1] of 

the probability 𝑃(𝛽) only when the minimum observed (actual) credit component 𝑀𝑖𝑛(𝛼) falls below the 
maximum of the likely (estimated) bankruptcy threshold values 𝑀𝑎𝑥(𝛽). Essentially, both distributions 
must have an apparent intersection, otherwise 𝜗�𝑃(𝛽)� is mathematically ill-defined. In the following 
analysis we realistically assume that all firms are subject to some bankruptcy risk and exclude the 
hypothetical case of which ∫ 𝜗�𝑃(𝛽)�𝑑𝑃1

0 < 1.6 Consequently, the expected credit component-related 
conditional probability of default is the mean value of the component failure probability random variable. 
We therefore obtain  

 
𝑃𝐷�𝐶𝑜𝑚𝑝 = ∫ 𝑃(𝛽)∞

−∞ 𝜗�𝑃(𝛽)�𝑑𝑃 = ∫ 𝜓(𝛽) �∫ 𝜉(𝛼)𝑑𝛼𝛽
−∞ �𝑑𝛽∞

−∞ .  (5) 
 

At this stage, it is crucial to understand that the variability of the estimated bankruptcy threshold 
values is the basis for the failure dependency among the fundamental credit components, while the 
dispersion of the tangible measures of these credit modules weakens the dependency of breakdowns. If 
the bankruptcy threshold is deterministic, failure probabilities of credit components are fixed and 
independent of each other. Conversely, if the actual credit values are deterministic, all credit components 
either fail together at a given threshold, or collectively persist, hence these credit components are 
perfectly correlated to one another.  

We therefore deduce that two borrowers could have the exact same structure of credit components, 
thus the same ultimate credit score, yet these two firms may convey distinct credit qualities. A necessary 
(and sufficient) condition for a similar creditworthiness of two borrowers having equivalent measures of 
credit components is that both distributions of actual credit values and estimated bankruptcy threshold 
values are the same across the two firms, respectively. Accordingly, existing credit scores miss critical 
information concerning the distributional properties of the tangible quantities of credit components and 
the approximated bankruptcy threshold values. We can illustrate this regular information loss with the 
following example of variable conversion.  

We assume for now that both observed measures of credit components and estimated bankruptcy 
threshold values are Normally-distributed random variables with means and standard deviations denoted 
as 𝜇𝛼, 𝜎𝛼, and 𝜇𝛽, 𝜎𝛽, respectively. In this case, common credit scores would have routinely assessed the 
probability of default by creating a new variable 𝛿 ≝ 𝛼 − 𝛽. Under the common assumption of 
independency between actual credit measures and approximated bankruptcy thresholds, 𝛿 is also a 
Normally-distributed random variable with a mean 𝜇𝛿 = 𝜇𝛼 − 𝜇𝛽 and an additive standard deviation 

𝜎𝛿 = �𝜎𝛼2 + 𝜎𝛽2. Consequently, 𝛿 becomes a new random variable with PDF 𝜚(𝛿), thus the credit 

component-related probability of default is:  
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𝑃𝐷�𝐶𝑜𝑚𝑝 = ∫ 𝜚(𝛿)𝑑𝛿∞
−∞ .  (6) 

 
Throughout this course, the dispersion parameters 𝜎𝛼 and 𝜎𝛽 are completely integrated to form a new 

standard deviation 𝜎𝛿. Subsequently, central credit information is getting lost because the new dispersion 
parameter 𝜎𝛿 is entirely indifferent to its origins. Since the variability of the bankruptcy threshold values 
𝜎𝛽 and the randomness of the actual credit components 𝜎𝛼 have totally different impacts on the ultimate 
failure dependency structure, the variable conversion procedure has caused the loss of valuable 
information. On the other hand, the current approach would assign the following credit component-related 
probability of default:  

 

𝑃𝐷�𝐶𝑜𝑚𝑝 = ∫ 1
𝜎𝛽√2𝜋

𝑒
−12�

𝛽−𝜇𝛽
𝜎𝛽

�
2

∞
−∞ �∫ 1

𝜎𝛼√2𝜋
𝑒−

1
2�
𝛼−𝜇𝛼
𝜎𝛼

�
2

𝛽
−∞ 𝑑𝛼�𝑑𝛽, (7) 

 
which is more sensitive to the true origins of the failure dependency structure for all the relevant credit 
components.  

Up to this point, we have obtained the probability of default as a result of a sudden deterioration in 
the measure of a single credit module. Nevertheless, some high-quality borrowers are sound enough to 
ensure that even when a single credit measure falls, they would still continue normal operations. This 
economic setting represents a situation where all credit modules are currently at high-enough levels, so 
that albeit a sole economic shock to any of these credit components, the underlying borrowing firm 
maintains an acceptable credit score thus avoids filing for bankruptcy. We therefore derive the complete 
probability of default under various economic settings regarding the dependency structures of all credit 
components within a typical credit score.  

When all credit components share a unified yet stochastic bankruptcy threshold, failures of these 
credit modules are not independent due to the joint correlations with this single dynamic cutoff point. 
Nonetheless, when the estimated shared bankruptcy threshold value is deterministic all the credit 
components are independent of each other. The latter phenomenon evolves since an individual 
component’s conditional failure probability is uniquely determined by the distributions of the actual credit 
values. Thus, when the approximated bankruptcy threshold value is constant, the likelihoods of a business 
failure due to sudden changes in the different credit modules are also independent. In this situation, 
equation (1) and (2) dictate that  

 
𝑃𝐷𝐶𝑜𝑚𝑝 = 𝑃(𝛼 < 𝛽) = ∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ ,  (8) 
 
and under the simplifying assumption of Identically Distributed (ID) credit modules, the probability of 
default associated with failures of all 𝑛 credit components is:  
 

𝑃𝐷𝑛−𝐶𝑜𝑚𝑝
𝐼𝐷 = �∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ �
𝑛

.  (9) 
 

In reality, however, the bankruptcy threshold value 𝛽 is not fixed. It is a random variable with PDF 
𝜓(𝛽), which is typically driven by idiosyncratic, industry, and macroeconomic pertinent conditions. In 
this case, the mean probability for failures of all 𝑛 ID credit components becomes:  

 
𝑃𝐷�𝑛−𝐶𝑜𝑚𝑝

𝐼𝐷 = ∫ 𝜓(𝛽)∞
−∞ �∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ �
𝑛
𝑑𝛽.  (10) 

 
In addition, we can remove the non-trivial assumption of ID credit components and obtain the 

probability of default associated with failures of all 𝑛 non-ID credit components as:7  
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𝑃𝐷�𝑛−𝐶𝑜𝑚𝑝
𝑛𝑜𝑛−𝐼𝐷 = ∫ 𝜓(𝛽)∞

−∞ ∏ �∫ 𝜉𝑖(𝛼)𝑑𝛼𝛽
−∞ �𝑛

𝑖=1 𝑑𝛽.  (11) 
 

From equation (10) we can further derive the probability of default associated with failures of 𝑚 out 
of 𝑛 ID credit components as: 

 
𝑃𝐷�𝑚/𝑛−𝐶𝑜𝑚𝑝

𝐼𝐷 = �𝑛𝑚�∫ 𝜓(𝛽)∞
−∞ �∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ �
𝑚
�∫ 𝜉(𝛼)𝑑𝛼∞
𝛽 �

𝑛−𝑚
𝑑𝛽,  (12) 

 
where �𝑛𝑚� ≝

𝑛!
𝑚!(𝑛−𝑚)!

 represents the likely combinations of the underlying credit components.8 
Similarly, from equation (11) we can also derive the probability of default associated with failures of 𝑚 
out of 𝑛 non-ID credit components as:  
 

𝑃𝐷�𝑚/𝑛−𝐶𝑜𝑚𝑝
𝑛𝑜𝑛−𝐼𝐷 = �𝑛𝑚�∫ 𝜓(𝛽)∞

−∞ ∏ �∫ 𝜉𝑖(𝛼)𝑑𝛼𝛽
−∞ �𝑚

𝑖=1 ∏ �∫ 𝜉𝑗(𝛼)𝑑𝛼∞
𝛽 �𝑛

𝑗=𝑚+1 𝑑𝛽, (13) 
 
where the first inner product ∏ [ ]𝑚

𝑖=1  identifies the 𝑚 failed credit components, and the second inner 
product ∏ [ ]𝑛

𝑗=𝑚+1  recognizes the (𝑛 −𝑚) non-defaulted credit modules.  
Finally, we can postulate the ultimate borrower’s probability of default as a random variable that 

accounts for failure dependency among the different credit components. We thus consider that a default 
event occurs whenever 𝑘 or more tangible credit modules fall below their estimated bankruptcy threshold 
values, where 𝑘 denotes the minimum required number of credit component failures that trigger corporate 
default, 𝑘 ∈ {1,2, … ,𝑛}. In the scenario of ID credit components we obtain:  
 

𝑃𝐷� 𝐼𝐷 = ∑ ��𝑛𝑚�∫ 𝜓(𝛽)∞
−∞ �∫ 𝜉(𝛼)𝑑𝛼𝛽

−∞ �
𝑚
�∫ 𝜉(𝛼)𝑑𝛼∞
𝛽 �

𝑛−𝑚
𝑑𝛽�𝑛

𝑚=𝑘 ,  (14) 
 
and in the non-ID incident we acquire the primary model as:  
 

𝑃𝐷� 𝑛𝑜𝑛−𝐼𝐷 = ∑ ��𝑛𝑚�∫ 𝜓(𝛽)∞
−∞ ∏ �∫ 𝜉𝑖(𝛼)𝑑𝛼𝛽

−∞ �𝑚
𝑖=1 ∏ �∫ 𝜉𝑗(𝛼)𝑑𝛼∞

𝛽 �𝑛
𝑗=𝑚+1 𝑑𝛽�𝑛

𝑚=𝑘 . (15) 
 

Logically, corporate creditworthiness is constructed from separate credit components, and the 
bankruptcy threshold values applied to these individual credit modules are different too. When the 
bankruptcy threshold values 𝛽𝑖 are independent of each other, equations (14) and (15) portray a faithful 
solution. On some occasions, however, bankruptcy threshold values may be cross-correlated throughout 
the diverse credit modules. For instance, various harmful macroeconomic shocks could simultaneously 
shift all bankruptcy threshold values 𝛽𝑖 to higher levels hence make lending institutions less tolerant 
during harsh economic environments. Alternatively, because lenders typically become more lenient 
during prosperous times, in extended expansionary economic cycles the number of bankruptcy threshold 
values may concurrently reside at lower heights. For these ordinary cases we ought to adjust the model 
and develop substitute derivations for a healthier assessment of probabilities of default.  

We may presume that all the bankruptcy threshold values are linearly correlated random variables, 
hence 𝛽𝑖 = ℂ𝑖𝛽(𝑈) + ℚ𝑖, where 𝛽𝑖 denotes the respective default cutoff point for specific credit 
component 𝑖, 𝛽(𝑈) is the unified bankruptcy threshold, and ℂ𝑖 and ℚ𝑖 are some constants. We further 
assume that each bankruptcy threshold value 𝛽𝑖 abides a Normal distribution with respective mean 𝜇𝑖 and 
variance 𝜎𝑖2. We can therefore standardize these random variables and obtain:  

 
𝛽(𝑈) = 𝛽𝑖−𝜇𝑖

𝜎𝑖
~𝑁(0,1)  ⇒  𝛽𝑖 = 𝜎𝑖𝛽(𝑈) + 𝜇𝑖.  (16) 
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Evidently, we can deploy the following transformations to better describe the probabilities of default 
in the ID and the non-ID credit components respective scenarios as:  

 

𝑃𝐷� 𝐼𝐷 = ∑ �
�𝑛𝑚�∫ 𝜙�𝛽(𝑈)�∞

−∞ �∫ 𝜉(𝛼)𝑑𝛼𝜎𝑖𝛽(𝑈)+𝜇𝑖
−∞ �

𝑚
×

�∫ 𝜉(𝛼)𝑑𝛼∞
𝜎𝑖𝛽(𝑈)+𝜇𝑖

�
𝑛−𝑚

𝑑𝛽(𝑈)
�𝑛

𝑚=𝑘 , (17) 

 
and  

𝑃𝐷� 𝑛𝑜𝑛−𝐼𝐷 = ∑ �
�𝑛𝑚�∫ 𝜙�𝛽(𝑈)�∞

−∞ ∏ �∫ 𝜉𝑖(𝛼)𝑑𝛼𝜎𝑖𝛽(𝑈)+𝜇𝑖
−∞ � ×𝑚

𝑖=1

∏ �∫ 𝜉𝑗(𝛼)𝑑𝛼∞
𝜎𝑗𝛽(𝑈)+𝜇𝑗

�𝑛
𝑗=𝑚+1 𝑑𝛽(𝑈)

�𝑛
𝑚=𝑘 , (18) 

 
where 𝜙�𝛽(𝑈)� denotes the PDF of the standard Normal distribution.  

In addition, occasionally, the assigned distributions of the tangible credit measures 𝛼𝑖 and the likely 
bankruptcy threshold values 𝛽𝑖 are merely rough approximations. In other instances, these disseminations 
are completely indefinite. In these cases, we can form analogous discrete versions of the continuous 
models. When such empirical estimation difficulties arise, the next discretization process can allow 
enhanced model flexibility and better calibration of model parameters with genuine data. The following 
standard numerical methodology divides the feasible domains of the above parameters into a large set of 
small intervals, discretizes the continuous environments, and approximates the probabilities of default 
with respective polynomial sums as:  

 
𝑃𝐷�𝐷𝑖𝑠𝑐

𝐼𝐷 = ∑ ��𝑛𝑚�∑ [𝑃(𝛽𝑖)]𝑚𝑖 [1 − 𝑃(𝛽𝑖)]𝑛−𝑚𝜓(𝛽𝑖)∆𝛽𝑖�𝑛
𝑚=𝑘 ,  (19) 

 
with 𝑖 ∈ {1,2, … ,𝑛} and  
 

𝑃𝐷�𝐷𝑖𝑠𝑐
𝑛𝑜𝑛−𝐼𝐷 = ∑ ��𝑛𝑚�∑ ∏ [𝑃(𝛽𝑖)]𝑚

𝑖=1 ∏ [1 − 𝑃(𝛽𝑖)]𝑛
𝑖=𝑚+1 𝜓(𝛽𝑖)∆𝛽𝑖𝑖 �𝑛

𝑚=𝑘 ,  (20) 
 
where according to equation (2), 𝑃(𝛽𝑖) ≝ ∫ 𝜉(𝛼)𝑑𝛼𝛽𝑖

−∞  is the credit component-related failure conditional 
probability with respect to a specific bankruptcy threshold value 𝛽𝑖, 𝜓(𝛽𝑖)∆𝛽𝑖 denotes the frequency with 
which the bankruptcy threshold value falls inside the discrete and open interval �𝛽𝑖 −

∆𝛽𝑖
2

,𝛽𝑖 + ∆𝛽𝑖
2
�, and 

∆𝛽𝑖 denotes an arbitrary small change in the respective bankruptcy threshold value.  
 
EMPIRICAL INVESTIGATION 
 
The Data 

We choose to demonstrate the functionality of the current model with five credit components of the 
Altman (1968) Z-score due to its solid reputation among both academics and practitioners as a predictive 
model for the financial health of industrial firms. To illustrate the present model, we collect 124 
consecutive quarters (31 years) from the Compustat dataset. This data source provides us with company, 
sector, and date vital identifiers, and all the necessary variables for computing a sufficient sample of all 
relevant credit components within the Altman (1968) Z-scores, from January 1980 to December 2010. 
These required variables include current assets, non-current assets, current liabilities, long-term liabilities, 
other liabilities, operating income after depreciation, retained earnings, total revenues, working capital, 
common shares outstanding, and quarterly closing share prices. This data source further allows us to 
identify bankrupt firms as having S&P quality current rankings mostly tagged with ‘D’ (for Chapter 11 
reorganization) and a few with ‘LIQ’ (for Chapter 7 liquidation).  
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From the entire available sample we eliminate observations with missing data and these records of 
financials and utilities (identified through GSECTOR 40 and 55). These sectors are constantly regulated 
and their accounting statements are structured in different ways than in other industries. We later focus on 
industrial firms (identified through GSECTOR 20). To comprehend the true essence of the proposed 
theory and to reduce the impact of outliers we further winsorize those accounting measures that fall in the 
top and bottom two percentiles.  
 
Descriptive Information 

Our complete sample encloses 192,861 records scattered over 4,079 firms, where 417 of them have 
filed for bankruptcy over the following years: from 1980 to 1984 (67), from 1985 to 1989 (35), from 1990 
to 1994 (93), from 1995 to 1999 (124), from 2000 to 2004 (59), and from 2005 to 2010 (39). Three firms 
having 63 observations are classified in Chapter 7 liquidation within these 417 bankrupt firms. The 
remaining 3,662 firms have either remained operational or were otherwise omitted from the database after 
a while.  

The 4,079 firms in the final sample are clustered into eight different sectors as follows: energy (264), 
materials (309), industrials (683), consumer discretionary (817), consumer staples (213), health care 
(708), information technology (991), telecommunication services (69), and others (25). The 417 bankrupt 
firms within are further distributed across these industries: energy (29), materials (42), industrials (62), 
consumer discretionary (123), consumer staples (15), health care (41), information technology (83), 
telecommunication services (14), and others (8).  
 
Methodologies and Findings 

To begin with, we wish to validate the proposed model’s basic assumptions, namely to authenticate 
that both tangible values of the applicable credit components and estimated bankruptcy thresholds 
associated with these credit modules are indeed dispersed and intersect each other. Therefore, we split the 
entire sample into two groups. The first subsample contains 181,212 non-bankrupt observations. The 
second subsample includes 11,649 bankrupt records. Since the first collection is nearly 16 times larger 
than the second set of observations, we balance these two subsamples while preserving the primary 
distributional properties by inflating the size of the latter group through a bootstrapping method. This 
standard procedure allows us to visually contrast the respective histograms.  
We then disintegrate, for each observation, the Altman (1968) Z-score into five credit components 
conforming to the five accounting ratios within as follows:  
 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 = 3.3 × 𝐸𝐵𝐼𝑇
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

+ 0.999 × 𝑆𝑎𝑙𝑒𝑠
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

  

+0.6 × 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

+ 1.2 × 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

+ 1.4 × 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

, (21) 
 
where 𝐶𝑜𝑚𝑝_1 ≝ 𝐸𝐵𝐼𝑇

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
, 𝐶𝑜𝑚𝑝_2 ≝ 𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
, and so on.  

Next, we plot the paired distributions of these five credit components: actual values among non-
bankrupt observations and estimated bankruptcy thresholds among defaulted records. We then confirm 
that these distributions intersect within Panels A of Figures 1 – 5. Below each chart we report the 
minimum, the maximum, the mean, and the standard deviation of the bankrupt and non-bankrupt set of 
observations, respectively. These figures further assist us in substantiating the key assumptions of the 
proposed model.  
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FIGURE 1 
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 1 

 
Panel A: Entire Market 𝐸𝐵𝐼𝑇

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 (Excluding Financials and Utilities)  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations -1.282 0.318 0.006 0.056 
Non-Bankrupt 
Observations 

-2.103 1.834 0.017 0.046 

 
Panel B: Industrial Firms Only 𝐸𝐵𝐼𝑇

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations -0.277 0.174 0.014 0.035 
Non-Bankrupt 
Observations 

-0.605 0.394 0.022 0.031 
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FIGURE 2 
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 2 

 
Panel A: Entire Market 𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 (Excluding Financials and Utilities)  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations 0.000 4.190 0.374 0.268 
Non-Bankrupt 
Observations 

0.000 8.272 0.334 0.240 

 
Panel B: Industrial Firms Only 𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 

 
 

 Minimum Maximum Mean Standard 
Deviation 

Bankrupt Observations 0.001 2.737 0.351 0231 
Non-Bankrupt 
Observations 

0.000 4.850 0.369 0.222 
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FIGURE 3 
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 3 

 
Panel A: Entire Market 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 (Excluding Financials and Utilities)  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations 0.000 40.039 2.244 3.350 
Non-Bankrupt 
Observations 

0.006 77.617 3.244 3.531 

 
Panel B: Industrial Firms Only 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations 0.006 15.328 0.993 1.232 
Non-Bankrupt 
Observations 

0.007 43.028 2.232 2.552 
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FIGURE 4 
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 4 

 
Panel A: Entire Market 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 (Excluding Financials and Utilities)  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations -0.736 0.904 0.245 0.212 
Non-Bankrupt 
Observations 

-1.179 0.964 0.291 0.216 

 
Panel B: Industrial Firms Only 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 

 
 

 Minimum Maximum Mean Standard 
Deviation 

Bankrupt Observations -0.397 0.867 0.176 0.159 
Non-Bankrupt 
Observations 

-0.427 0.902 0.275 0.183 
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FIGURE 5 
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 5 

 
Panel A: Entire Market 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 (Excluding Financials and Utilities)  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations -14.091 2.161 -0.070 0.667 
Non-Bankrupt 
Observations 

-28.915 2.662 0.061 0.744 

 
Panel B: Industrial Firms Only 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
  

 
 Minimum Maximum Mean Standard 

Deviation 
Bankrupt Observations -5.328 0.676 0.011 0.458 
Non-Bankrupt 
Observations 

-14.422 1.621 0.195 0.454 

 
 

We are able to witness that throughout this aggregate market analysis both credit components and the 
respective bankruptcy threshold values are certainly dispersed and intersect each other. Habitually, the 
non-bankrupt observations are stretched over larger values, while the bankrupt records are extended over 
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lower quantities.9 In addition, some credit modules exhibit dispersion patterns that closely resemble the 
Normal distribution, mainly because they draw statistics from figures that can be either positive or 
negative. These are credit components one ( 𝐸𝐵𝐼𝑇

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
) and five (𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
). Other profiles of 

strictly non-negative accounting ratios better describe truncated Normal distributions. These are credit 
components two ( 𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
) and three (𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
). Credit module four (𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
), on 

the other hand, has few characteristics which are similar to the Normal distribution, but overall its 
histogram image is rather ambiguous.10  

After corroborating the model’s fundamental assumptions with the aggregate dataset we now turn to 
examine these assumptions over the restricted subsample of industrial firms. We recall that the Altman 
(1968) Z-score directly aims towards these particular companies. Similar to before, we split the industrial 
firms into two groups. The first set comprises 40,035 non-bankrupt observations. The second subsample 
includes 1,565 bankrupt records. Since the first collection is nearly 26 times larger than the second set of 
observations, once again we balance these two subsamples while protecting the main distributional 
properties by increasing the size of the second group through a standard bootstrapping method. We report 
the respective results for the singular credit components in Panels B of Figures 1 – 5. Below each chart 
we report again the minimum, the maximum, the mean, and the standard deviation of the bankrupt and 
non-bankrupt set of observations, respectively.  

Overall, the findings within these analyses are not materially different than the results for the entire 
market. All five credit components and the respective bankruptcy threshold values are indisputably 
dispersed and intersect each other while the non-bankrupt observations are stretched over larger values, 
and the bankrupt records are extended over lower quantities. Moreover, similar to the prior analysis, 
credit components one, four, and five exhibit dispersion patterns that reasonably resemble the Normal 
distribution, while credit modules two and three better describe truncated Normal distributions due to 
their non-negative feasible domains.  

A complementary appraisal of the minimum values, the maximum records, and the mean estimations 
for the bankrupt and non-bankrupt industrial credit components further support our early presumptions for 
dispersed distributions that intersect each other with universally higher quantities among the non-bankrupt 
observations. We therefore conclude that our model assumptions are valid and truly hold in practice.  

We now turn to explore the model’s functionality with individual cases of industrial firms. Since most 
of the five credit components under investigation practically follow Normal disseminations, yet they are 
not identically distributed, we deploy the next analyses through the prime model as presented in equation 
(15). To uncover the minimum number 𝑘 of credit component failures that may trigger a corporate default 
we arbitrarily define 𝑍∗ =  1.62 as the universal bankruptcy threshold.11 For each observation we 
examine whether the underlying firm remains operational under 32 different scenarios that independently 
alternate the separate credit components towards their respective bankruptcy thresholds. Explicitly, we 
inspect whether the corresponding firms default (their hypothetical Z-scores fall below 𝑍∗) or survive 
(their theoretical Z-scores remain above 𝑍∗) when zero, one, two, three, four, or all five related credit 
components are induced to fail (alternated to touch their respective timely threshold values).12  

Subsequently, we compute the minimum required number 𝑘 of credit component failures that can 
trigger corporate default, while further identifying the precise credit components that may prompt this 
hypothetical bankruptcy scenario. The SAS package further allows us to solve the nested integrals within 
equation (15) through the ‘Proc IML’ procedure accompanied by the ‘call quad’ routine and then to 
directly aggregate the ultimate probabilities of default.  

To illustrate how 𝑃𝐷 diverge, we report sample results for the non-bankrupt industrial firms in Table 
1. We also demonstrate the model’s performance over bankrupt industrial firms in Table 2. Within these 
two tables and for each instance, we present the company’s ticker, the year, the quarter, the S&P credit 
rating, the credit-related accounting measures, the complete Z-score, the five measures of credit 
components, the minimum number 𝑘 of credit component failures that may cause a bankruptcy, and the 
respective probability of default. Sample cases are sorted within these two tables in consecutive order of 
the probabilities of default.  
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To illustrate how the proposed model’s 𝑃𝐷 diverge among the non-bankrupt records, this table 
reports a sample of representative findings from the 41,035 non-bankrupt industrial observations. For 
each case, we present the company’s ticker, the year, the quarter, the corresponding S&P credit rating, the 
credit-related accounting measures, the complete Altman (1968) Z-score, the five measures of credit 
components computed as: 𝐶𝑜𝑚𝑝_1 ≝ 𝐸𝐵𝐼𝑇

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
, 𝐶𝑜𝑚𝑝_2 ≝ 𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
, 

𝐶𝑜𝑚𝑝_3 ≝ 𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

, 𝐶𝑜𝑚𝑝_4 ≝ 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

, 𝐶𝑜𝑚𝑝_5 ≝ 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

, the 
minimum number 𝑘 of credit component failures that may cause a bankruptcy, and the respective 
probability of default 𝑃𝐷 as estimated within equation (15). These examples are sorted in consecutive 
order of the estimated probabilities of default. For better assessment, we highlight eight instances of the 
same company ‘AIR’ with a gray color. All share the same credit rating of ‘B-.’ We further highlight 
seven instances of the same company ‘CECE’ with bold fonts. All share the same credit rating of ‘C.’  

Some interesting inquiries arise from these sample results. For example, the company ‘AIR’ appears 
eight times in Table 1. In all of these eight instances (highlighted with gray color in the table), the firm 
gets a credit rating of ‘B-,’ while the Z-scores are mostly stable. Nonetheless, the respective 𝑃𝐷 
substantially vary across these cases due to additional information acquired regarding the stochastic 
behavior of the credit components and the bankruptcy threshold values. Likewise, the company ‘CECE’ 
emerges seven times in Table 1. In all of these seven cases (accentuated with bold fonts in the table), the 
firm gets a credit rating of ‘C,’ while the Z-scores moderately diverge. Yet, the respective 𝑃𝐷 are 
considerably different across these records. We further perceive that, as expected by the theory, lower 𝑃𝐷 
are continuously associated with higher minimum number 𝑘 of credit component failures that may cause a 
bankruptcy, and vice versa.  

Additionally, we also notice that the Z-scores observed within Table 2 are not substantially different 
than those detected in Table 1. However, the ultimate probabilities of default largely exhibit higher 
values in the table of bankrupt industrial firms. A special attention should be given to the last two rows on 
Table 2. These remarkable examples present two bankrupt firms having market value of equity more than 
three times their respective total liabilities. Furthermore, these two corporations exhibit reasonable Z-
scores. Nonetheless, the proposed model assigns high probabilities of default due to its ability to capture 
additional information regarding the stochastic behavior of the five different credit components.  
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In Table 3 we further contrast the main statistical properties of the ultimate probabilities of default 
between the two subsamples of bankrupt and non-bankrupt industrial firms as derived from the suggested 
model. We thus report the number of observations, the minimum, the maximum, the mean, the standard 
deviation, and the respective third and fourth central moments.  
 

TABLE 3 
COMPARATIVE PROPERTIES OF DEFAULT PROBABILITIES AMONG INDUSTRIAL 

FIRMS 
 

 Bankrupt Observations Non-Bankrupt Observations 
Number of Measures 1,565 40,035 
Minimum  0.1762 0.0042 
Maximum  0.9130 0.8817 
Mean  0.7874 0.3607 
Standard Deviation 0.0986 0.2141 
Skewness -4.1049 -0.5889 
Kurtosis 18.0680 -1.1086 

 
To better determine the proposed model’s capabilities, this table compares the main statistical 

characteristics of the estimated probabilities of default 𝑃𝐷 between the two subsamples of 1,565 bankrupt 
and 40,035 non-bankrupt industrial observations from 1980 to 2010. We report the number of valid 
measures, the minimum, the maximum, the mean, the standard deviation, as well as the respective third 
and fourth central moments.  

Throughout this comparison we provide strong evidence that empirical estimations of the model’s 
probabilities of default among the bankrupt observations stretch from a higher minimum level to a higher 
maximum height than for the non-bankrupt records. Furthermore, the mean 𝑃𝐷 appears to be significantly 
higher, while the standard deviation is considerably lower within the set of bankrupt firms. The 
subsample of bankrupt industrials further exhibits a lower negative skewness, which indicates a longer 
left tail of the distribution, and a much higher kurtosis, which designates that more observations are 
clustered near the peak.13  

These numerical measures illustrate the real added value of the current model when differentiating 
between bankrupt and non-bankrupt candidates. The proposed scheme can clearly differentiate between 
failure and non-failure nominees. In addition, the current theory utilizes additional vital credit-related 
information, thus can accurately segregate the credit qualities of firms having similar credit ratings or 
parallel Z-scores.  
 
SUMMARY 
 

In this study we explore a stochastic model that takes a new approach to assessing corporate credit 
risk. The proposed theory is not a structural credit model per se, since it does not directly examine the 
composition of available assets and outstanding debt issuances. On the other hand, although it draws input 
from accessible accounting records, the current scheme cannot be considered a credit score as well. The 
suggested model provides precise probabilities of default and it overcomes key drawbacks in common 
linear credit grades. In particular, the present methodology realistically assumes a non-linear behavior of 
the risky modules that eventually compose these customary credit scores. Hence, the current model 
analyzes the complete distributional attributes and utilizes higher central moments of the relevant credit 
components when studying the ultimate credit quality of a borrower. Through that, our theory implicitly 
assumes a dependent configuration of the underlying credit components.  

Essentially, the proposed model approximates the likelihoods for feasible intersections between most 
recent observed values of credit elements and their respective estimated bankruptcy threshold quantities. 
These prospects do not consider fixed appraisals. Instead, the model constantly monitors the development 
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of the dispersal properties of these credit components as well as their likely default cutoff points. These 
pragmatic presumptions assist us in capturing supplementary vital credit-related information.  
When tested over an inclusive set of empirical observations, the model performs well. Not only is it able 
to distinguish between comparable borrowers that hold similar credit scores or equal credit ratings, but the 
current methodology can also predict with a good precision bankrupt instances up to two years in 
advance.  

The current theory is indeed more complicated than external credit scores or internal scorecards in use 
by most financial institutions, mainly because it utilizes additional credit-related vital information. 
Nonetheless, the suggested model draws input from accessible accounting data hence it is surely 
measurable, verifiable, and programmable. Therefore, it can serve a large scale of lenders that desire to 
achieve a much higher predictive power than other credit models towards likely business failures. The 
present scheme becomes highly usable since it relies upon favorably realistic assumptions and concrete 
statistical concepts. It can, therefore, assist banks to attain superior lending decisions and enhanced 
profitability than otherwise obtained by using alternative existing credit methodologies.  
 
ENDNOTES 
 
1. See for example the Altman (1968) Z-score, the Ohlson (1980) O-score, the cash-flow-based score of 
Aziz, Emanuel, and Lawson (1988), or the Altman (2010) Z-MetricsTM methodology.  
2. Although a standard variance-covariance matrix can certainly capture the interrelationships among 
credit components, this somewhat naïve approach misses the variability of corporate break points and 
their coherent links to ad hoc macroeconomic conditions.  
3. For instance, the Z-score contains 𝑛 = 5 credit components, the O-score includes 𝑛 = 9 credit 
modules, the cash-flow-based score incorporates 𝑛 = 5 credit parts, and the Z-MetricsTM score 
comprises 𝑛 = 14 static and trend credit elements.  
4. Alternatively, we can also set the threshold values to mark the event of Chapter 7 liquidation, yet it is 
somewhat more intuitive to consider threshold values for Chapter 11 bankruptcy reorganization, since 
common credit scores customarily refer to this realm.  
5. Rice (2006) provides more explanations on this relatively modest arithmetical transition.  
6. In the later empirical analysis we thoroughly corroborate this assumption.  
7. The specific scaling procedure of the underlying credit score from which the current model draws 
inferences dictates whether the credit components are identically distributed or not.  
8. When directive credit component failures are appropriate, we can extend this idea to handle ordered 
permutations as well.  
9. The contrasted means of the second credit component makes this testimony somewhat less apparent. 
However, even within this specific credit module, there are significantly more low-measures among the 
bankrupt records, than within the non-bankrupt observations.  
10. This may serve as an example in which a discretization procedure for the continuous model is 
beneficial.  
11. For purpose of robustness we test other critical values as well, yet it appears that optimal results are 
obtained near the inclusive threshold Z-score of 1.62.  
12. We test 32 possible scenarios since ∑ �5

𝑖 �
5
𝑖=0 ≝ �5

0� + �5
1� + �5

2� + �5
3� + �5

4� + �5
5� = 32.  

13. It would be difficult to further contrast these subsamples with parametric or non-parametric statistical 
tests since both locational and distributional parameters vary across the groups.  
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