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In this study we suggest an original non-linear corporate credit risk model that accounts for the complete
distributional properties of common observed risk modules and their corresponding estimated default
threshold values. The proposed model predicts corporate bankruptcies based on the consequential
interrelationships within these credit components. We illustrate the theory over a large sample of
observations and further authenticate its added value when predicting business failures. Despite the
relatively higher complexity involved, compared to linear credit scores or scorecards, the present scheme
can serve financial institutions and other lenders to make superior lending decisions and achieve higher
overall profitability.

INTRODUCTION

Customary external credit scores as well as banks’ internal scorecards typically assess the credit
quality of borrowing firms by examining pertinent accounting measures including size, profitability,
leverage, liquidity, solvency, interest coverage, asset quality, investment activity, growth rate, dividend
payout, financing results, various market quantities of equity price, return, and volatility patterns, and
macroeconomic variables including unemployment rate, Gross Domestic Product (GDP) growth rate,
inflation level, and credit spread over U.S. Treasury bonds." These common credit estimation
methodologies are normally structured through discriminant analyses, logistic regressions, or alternative
linear econometric techniques. Nonetheless, all these credit forecasting schemes endure collective
drawbacks, as described hereafter.

First, these linear predictive tools must refute multicollinearity, thus they all implicitly assume
independent configurations of the credit components within. In reality, however, the credit elements are
correlated to one another, because the same macroeconomic factors simultaneously shape many of them.
For instance, reduced profitability naturally leads to depressed stock prices. Higher leverage often triggers
intensified interest coverage rates. A downturned economic cycle typically prompts lower investment
activity. Smaller firms usually hold inferior assets, and a poor measure of solvency is habitually
associated with lower dividend payout. A more realistic credit model must consider these and other
interrelationships among the relevant credit components.

Second, ordinary credit estimation methods categorize borrowers with quantifiable scores. Then,
financial institutions further assign lending rates based on the mean values of these scores, regardless of
other valuable statistical characteristics of these measures. Different firms, however, can reach
bankruptcy thresholds at diverse credit scores, and the full distributional properties of the underlying
credit components and the potential break points are essential input when predicting business failures.
Moreover, the creditworthiness of two firms having the exact same credit score could be substantially
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different if credit components of one are more volatile than credit modules of the other. Observed
variability in the fundamental credit ingredients that eventually compose the complete credit score
evidently affects the firm’s ultimate probability of default (PD), since the likelihoods to reach bankruptcy
thresholds can vary in this case. Furthermore, these corporate break points may have their own
disseminations depending on idiosyncratic as well as macroeconomic factors.

In this study, we aim to triumph over the above obstacles and present a stochastic risk model, which
allows us to accommodate different statistical merits of correlated observed credit components and
distributional characteristics of estimated bankruptcy threshold values in different economic
circumstances. However, the current theory does not require us to explicitly compute any correlation
coefficients among the underlying credit modules.” Instead, we utilize several dispersion properties of the
underlying credit components and the likely bankruptcy threshold values. The feasible intersections of
these respective distributions are the sources of dependency in our proposed credit model.

The current stochastic model is certainly more complex than existing linear credit scores and other
applied scorecards in use. However, since the proposed theory relies upon observed accounting
statements, it is indeed measurable, verifiable, and programmable. Thus, the suggested theory can serve a
large spectrum of lenders that desire to achieve a higher predictive strength than existing linear credit
scores towards likely corporate bankruptcies. The present scheme becomes exceedingly usable since it
evolves from highly realistic assumptions and concrete statistical concepts. It can, therefore, assist
financial institutions, banks, and other lenders to make healthier lending decisions and achieve higher
overall profitability.

THE MODEL

We consider a universal paradigm where a lender utilizes a credit score, which contains n
components that evidently determine the creditworthiness of the borrower.” The different credit modules
typically include quantitative measures such as accounting ratios, market variables, and macroeconomic
parameters, but in general, these credit components may also incorporate qualitative estimations of
management quality, marketing strength, growth prospects, or any other quantifiable soft information.

For each credit component, we can collect its tangible measure a and further identify its failure
threshold value f. Tangible measures a; naturally comprise observed past and present records of each
credit component i € {1,2,...n}. The cutoff-points B; denote estimated critical quantities that label the
area in which the underlying borrowing firm would presumably file for bankruptcy Chapter 11
reorganization.' These appraisals are typically collected from prior bankrupt firms within the relevant
industry, and when available, from defaulted firms that had (prior to their failures) similar financial
characteristics to those of the borrowing firm under investigation. Nevertheless, in reality, these
parameters are not fixed. Instead, we allow them to be random variables with Probability Density
Functions (PDF), ¢ (a) and y(B), respectively.

By definition, bankruptcy may occur whenever a current measure of a credit module « falls below its
estimated bankruptcy threshold value £, thus a credit component-related probability of default is:

PDComp = P(a < p). (D
In this case, a credit module-related probability of default is a random variable by itself. We can

further describe this probability as a function of the bankruptcy threshold value § within small intervals
of width da as follows:

PB) = [°_¢(@)da. @)

The realization of a default probability P(B) distinctively corresponds to a specific bankruptcy
threshold value . Furthermore, the likelihood for a credit component-related probability of default being
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equal to P(B) is equivalent to the chances for a bankruptcy threshold value being equal to . More
formally we define

9(P(B))dP = Y(B)dp, (3)

where 9(P(B)) is the PDF of the credit component-related probability of a default random variable P(f).
As a function of a continuous random variable, the likelihood for the credit component-related conditional

probability of default is differentiable and strictly monotonic function over some interval. Furthermore, it
has a PDF in the form

9(P(B)) = w(P1(p)) 52 )

where P~1(B) ¥ B(P), hence it is the inverse function of P(B).’
In this setting, f0119(P ([)’))dP =1, hence 19(P(,B)) is a valid PDF over the feasible domain [0,1] of

the probability P(f) only when the minimum observed (actual) credit component Min(«a) falls below the
maximum of the likely (estimated) bankruptcy threshold values Max(B). Essentially, both distributions
must have an apparent intersection, otherwise 19(P(,8)) is mathematically ill-defined. In the following
analysis we realistically assume that all firms are subject to some bankruptcy risk and exclude the

hypothetical case of which folﬁ(P(ﬁ))dP < 1.% Consequently, the expected credit component-related

conditional probability of default is the mean value of the component failure probability random variable.
We therefore obtain

PDcomp = I 0, PBYO(P(B))dP = [ w(B) (J” é(e)dar)dp. )

At this stage, it is crucial to understand that the variability of the estimated bankruptcy threshold
values is the basis for the failure dependency among the fundamental credit components, while the
dispersion of the tangible measures of these credit modules weakens the dependency of breakdowns. If
the bankruptcy threshold is deterministic, failure probabilities of credit components are fixed and
independent of each other. Conversely, if the actual credit values are deterministic, all credit components
either fail together at a given threshold, or collectively persist, hence these credit components are
perfectly correlated to one another.

We therefore deduce that two borrowers could have the exact same structure of credit components,
thus the same ultimate credit score, yet these two firms may convey distinct credit qualities. A necessary
(and sufficient) condition for a similar creditworthiness of two borrowers having equivalent measures of
credit components is that both distributions of actual credit values and estimated bankruptcy threshold
values are the same across the two firms, respectively. Accordingly, existing credit scores miss critical
information concerning the distributional properties of the tangible quantities of credit components and
the approximated bankruptcy threshold values. We can illustrate this regular information loss with the
following example of variable conversion.

We assume for now that both observed measures of credit components and estimated bankruptcy
threshold values are Normally-distributed random variables with means and standard deviations denoted
as Uy, 04, and Ug, ag, respectively. In this case, common credit scores would have routinely assessed the
probability of default by creating a new variable § £ a — . Under the common assumption of
independency between actual credit measures and approximated bankruptcy thresholds, & is also a
Normally-distributed random variable with a mean ps = u, — ug and an additive standard deviation

Os = / ol + O';. Consequently, § becomes a new random variable with PDF (&), thus the credit

component-related probability of default is:
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ITDComp = fjooo 0(8)ds. (6)

Throughout this course, the dispersion parameters o, and gg are completely integrated to form a new
standard deviation g5. Subsequently, central credit information is getting lost because the new dispersion
parameter g is entirely indifferent to its origins. Since the variability of the bankruptcy threshold values
op and the randomness of the actual credit components g, have totally different impacts on the ultimate
failure dependency structure, the variable conversion procedure has caused the loss of valuable
information. On the other hand, the current approach would assign the following credit component-related
probability of default:

alla

) d dB, (7)

— 0 1
PDComp = f_oo UB‘/_ [f °°0a\/_

which is more sensitive to the true origins of the failure dependency structure for all the relevant credit
components.

Up to this point, we have obtained the probability of default as a result of a sudden deterioration in
the measure of a single credit module. Nevertheless, some high-quality borrowers are sound enough to
ensure that even when a single credit measure falls, they would still continue normal operations. This
economic setting represents a situation where all credit modules are currently at high-enough levels, so
that albeit a sole economic shock to any of these credit components, the underlying borrowing firm
maintains an acceptable credit score thus avoids filing for bankruptcy. We therefore derive the complete
probability of default under various economic settings regarding the dependency structures of all credit
components within a typical credit score.

When all credit components share a unified yet stochastic bankruptcy threshold, failures of these
credit modules are not independent due to the joint correlations with this single dynamic cutoff point.
Nonetheless, when the estimated shared bankruptcy threshold value is deterministic all the credit
components are independent of each other. The latter phenomenon evolves since an individual
component’s conditional failure probability is uniquely determined by the distributions of the actual credit
values. Thus, when the approximated bankruptcy threshold value is constant, the likelihoods of a business
failure due to sudden changes in the different credit modules are also independent. In this situation,
equation (1) and (2) dictate that

PDeomp = P(a < B) = [*_#(@)da, ®)

and under the simplifying assumption of Identically Distributed (ID) credit modules, the probability of
default associated with failures of all n credit components is:

PDIP comp = [17,, € (@)da]". ©)

In reality, however, the bankruptcy threshold value £ is not fixed. It is a random variable with PDF
Y (B), which is typically driven by idiosyncratic, industry, and macroeconomic pertinent conditions. In
this case, the mean probability for failures of all n ID credit components becomes:

P2 omp = [, w(B) |12, €(@)da]" ap. (10)

In addition, we can remove the non-trivial assumption of ID credit components and obtain the
probability of default associated with failures of all n non-ID credit components as:’
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PDRoA, = [ (B s [ 17, i) da] dp. (11)

From equation (10) we can further derive the probability of default associated with failures of m out
of n ID credit components as:

PDE s comp = (1) 2 0B |2, €(@da] " [ [ EC@rda] ™ p. (12)

n ! . o . .
where (m) & — (:_m)' represents the likely combinations of the underlying credit components.®

Similarly, from equation (11) we can also derive the probability of default associated with failures of m
out of n non-ID credit components as:

—

Pty = () Lo WOV T 1, 1@ T [ 65 @] ap. (3

where the first inner product []/2,[ ] identifies the m failed credit components, and the second inner
product [T7-,,,11[ ] recognizes the (n — m) non-defaulted credit modules.

Finally, we can postulate the ultimate borrower’s probability of default as a random variable that
accounts for failure dependency among the different credit components. We thus consider that a default
event occurs whenever k or more tangible credit modules fall below their estimated bankruptcy threshold
values, where k denotes the minimum required number of credit component failures that trigger corporate
default, k € {1,2, ..., n}. In the scenario of ID credit components we obtain:

P =53 [() 12, wB [, é@yda] " [ €(a)da] " ap) (14

and in the non-ID incident we acquire the primary model as:

poronie = 5 ((5) 17, O T [, @ da] T [ (@ da] @) 19)

Logically, corporate creditworthiness is constructed from separate credit components, and the
bankruptcy threshold values applied to these individual credit modules are different too. When the
bankruptcy threshold values §; are independent of each other, equations (14) and (15) portray a faithful
solution. On some occasions, however, bankruptcy threshold values may be cross-correlated throughout
the diverse credit modules. For instance, various harmful macroeconomic shocks could simultaneously
shift all bankruptcy threshold values f5; to higher levels hence make lending institutions less tolerant
during harsh economic environments. Alternatively, because lenders typically become more lenient
during prosperous times, in extended expansionary economic cycles the number of bankruptcy threshold
values may concurrently reside at lower heights. For these ordinary cases we ought to adjust the model
and develop substitute derivations for a healthier assessment of probabilities of default.

We may presume that all the bankruptcy threshold values are linearly correlated random variables,
hence B; = ;) + Q;, where f8; denotes the respective default cutoff point for specific credit
component i, BU) is the unified bankruptcy threshold, and C; and Q; are some constants. We further
assume that each bankruptcy threshold value §; abides a Normal distribution with respective mean y; and
variance /. We can therefore standardize these random variables and obtain:

B = EEHN(01) = B = 0B + u. (16)
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Evidently, we can deploy the following transformations to better describe the probabilities of default
in the ID and the non-ID credit components respective scenarios as:

—

PDID —yn

m=k

(W) 208|178 g(@rda] " x

n-m -
[f::g(w_,_#i f(a)da] dlg(U)

and
(rrrlz) f—moo ¢('B(U)) [T, [f_aéoﬁw)w $i (a)da] X

j=m+1 [f:;ﬁ(u)"'ﬂj J (a)da] dp®

ppnon—ID _ \'n
PD — 4m=k

(18)

where qb(ﬂ(u)) denotes the PDF of the standard Normal distribution.

In addition, occasionally, the assigned distributions of the tangible credit measures a; and the likely
bankruptcy threshold values f5; are merely rough approximations. In other instances, these disseminations
are completely indefinite. In these cases, we can form analogous discrete versions of the continuous
models. When such empirical estimation difficulties arise, the next discretization process can allow
enhanced model flexibility and better calibration of model parameters with genuine data. The following
standard numerical methodology divides the feasible domains of the above parameters into a large set of
small intervals, discretizes the continuous environments, and approximates the probabilities of default
with respective polynomial sums as:

DRy = St (1) P BOT™ [1 = P(BOT™ (BB}, (19)

withi € {1,2,...,n} and
DR = 3 A ) S TP BN T a1 = PBTW(B)AB). (20)

where according to equation (2), P(B;) & [ _ﬁ ;O ¢(a)da is the credit component-related failure conditional
probability with respect to a specific bankruptcy threshold value S;, ¥ (B;)AB; denotes the frequency with
which the bankruptcy threshold value falls inside the discrete and open interval (ﬁi - ATBi, Bi + ATﬁi), and
Ap; denotes an arbitrary small change in the respective bankruptcy threshold value.

EMPIRICAL INVESTIGATION

The Data

We choose to demonstrate the functionality of the current model with five credit components of the
Altman (1968) Z-score due to its solid reputation among both academics and practitioners as a predictive
model for the financial health of industrial firms. To illustrate the present model, we collect 124
consecutive quarters (31 years) from the Compustat dataset. This data source provides us with company,
sector, and date vital identifiers, and all the necessary variables for computing a sufficient sample of all
relevant credit components within the Altman (1968) Z-scores, from January 1980 to December 2010.
These required variables include current assets, non-current assets, current liabilities, long-term liabilities,
other liabilities, operating income after depreciation, retained earnings, total revenues, working capital,
common shares outstanding, and quarterly closing share prices. This data source further allows us to
identify bankrupt firms as having S&P quality current rankings mostly tagged with ‘D’ (for Chapter 11
reorganization) and a few with ‘LIQ’ (for Chapter 7 liquidation).
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From the entire available sample we eliminate observations with missing data and these records of
financials and utilities (identified through GSECTOR 40 and 55). These sectors are constantly regulated
and their accounting statements are structured in different ways than in other industries. We later focus on
industrial firms (identified through GSECTOR 20). To comprehend the true essence of the proposed
theory and to reduce the impact of outliers we further winsorize those accounting measures that fall in the
top and bottom two percentiles.

Descriptive Information

Our complete sample encloses 192,861 records scattered over 4,079 firms, where 417 of them have
filed for bankruptcy over the following years: from 1980 to 1984 (67), from 1985 to 1989 (35), from 1990
to 1994 (93), from 1995 to 1999 (124), from 2000 to 2004 (59), and from 2005 to 2010 (39). Three firms
having 63 observations are classified in Chapter 7 liquidation within these 417 bankrupt firms. The
remaining 3,662 firms have either remained operational or were otherwise omitted from the database after
a while.

The 4,079 firms in the final sample are clustered into eight different sectors as follows: energy (264),
materials (309), industrials (683), consumer discretionary (817), consumer staples (213), health care
(708), information technology (991), telecommunication services (69), and others (25). The 417 bankrupt
firms within are further distributed across these industries: energy (29), materials (42), industrials (62),
consumer discretionary (123), consumer staples (15), health care (41), information technology (83),
telecommunication services (14), and others (8).

Methodologies and Findings

To begin with, we wish to validate the proposed model’s basic assumptions, namely to authenticate
that both tangible values of the applicable credit components and estimated bankruptcy thresholds
associated with these credit modules are indeed dispersed and intersect each other. Therefore, we split the
entire sample into two groups. The first subsample contains 181,212 non-bankrupt observations. The
second subsample includes 11,649 bankrupt records. Since the first collection is nearly 16 times larger
than the second set of observations, we balance these two subsamples while preserving the primary
distributional properties by inflating the size of the latter group through a bootstrapping method. This
standard procedure allows us to visually contrast the respective histograms.
We then disintegrate, for each observation, the Altman (1968) Z-score into five credit components
conforming to the five accounting ratios within as follows:

7 —score = 3.3 X ————— + (0.999 x

Total Assets Total Assets
Market Value of Equity +1.2 % Working Capital Retained Earnings

Total Liabilities Total Assets ) Total Assets

+0.6 X

A ey

Total Assets’ —7 7 Total Assets’ ’

Next, we plot the paired distributions of these five credit components: actual values among non-
bankrupt observations and estimated bankruptcy thresholds among defaulted records. We then confirm
that these distributions intersect within Panels A of Figures 1 — 5. Below each chart we report the
minimum, the maximum, the mean, and the standard deviation of the bankrupt and non-bankrupt set of
observations, respectively. These figures further assist us in substantiating the key assumptions of the
proposed model.

where Comp_1 &
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FIGURE 1

MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 1
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Panel A: Entire Market

FIGURE 2
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 2
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FIGURE 3
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 3
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Panel A: Entire Market
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FIGURE 4
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. 4
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FIGURE 5
MATCHING DISTRIBUTIONS OF CREDIT COMPONENT NO. §

Retained Earnings

Panel A: Entire Market

35000 -
32500 -
30000 -
27500 - Comp-5 Bankrupt Observations
25000 -
22500 -
20000 -
17500 -
15000 -
12500 -
10000 -
7500
5000 -
2500 -

D T T

Total Assers (Excluding Financials and Utilities)

Comp-5 Non-Bankrupt Observations

T T

T T T 1T 1 17T T T T T 1T T T T T T 1T 1T T T 11
if
-

1

-2.9

1
et A B T T L B N B T ) ) T O T
e agTEddd969 990000 o Hdd

3.3
3.1

Minimum Maximum Mean  Standard
Deviation
Bankrupt Observations -14.091 2.161 -0.070 0.667
Non-Bankrupt -28915 2.662 0.061 0.744
Observations

Retained Earnings

Panel B: Industrial Firms Only

Total Assets
13000 -
12000 -
11000 -
10000 -
9000 -
8000 -
7000 -
6000 -
5000 +
4000 -|
3000 -
2000
1000 -|

Comp-5 Bankrupt Observations

Comp-5 Non-Bankrupt Observations

0 rrrTrTr;:‘T<TI< TrTYrsYtr—— U oD T T T I o

Minimum Maximum Mean Standard
Deviation
Bankrupt Observations -5.328 0.676 0.011 0.458

Non-Bankrupt -14.422 1.621 0.195 0.454
Observations

We are able to witness that throughout this aggregate market analysis both credit components and the
respective bankruptcy threshold values are certainly dispersed and intersect each other. Habitually, the
non-bankrupt observations are stretched over larger values, while the bankrupt records are extended over
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lower quantities.” In addition, some credit modules exhibit dispersion patterns that closely resemble the
Normal distribution, mainly because they draw statistics from figures that can be either positive or

EBIT Retained Earnings
—— ) and five ( g ). Other profiles of
Total Assets Total Assets

strictly non-negative accounting ratios better describe truncated Normal distributions. These are credit
Sales Market Value of Equit . Working Capital
————) and three ( - f 1 y). Credit module four (¢), on
Total Assets o ?‘otal Llabl'lltl.es o . Total Assets .
the other hand, has few characteristics which are similar to the Normal distribution, but overall its

histogram image is rather ambiguous.'’

After corroborating the model’s fundamental assumptions with the aggregate dataset we now turn to
examine these assumptions over the restricted subsample of industrial firms. We recall that the Altman
(1968) Z-score directly aims towards these particular companies. Similar to before, we split the industrial
firms into two groups. The first set comprises 40,035 non-bankrupt observations. The second subsample
includes 1,565 bankrupt records. Since the first collection is nearly 26 times larger than the second set of
observations, once again we balance these two subsamples while protecting the main distributional
properties by increasing the size of the second group through a standard bootstrapping method. We report
the respective results for the singular credit components in Panels B of Figures 1 — 5. Below each chart
we report again the minimum, the maximum, the mean, and the standard deviation of the bankrupt and
non-bankrupt set of observations, respectively.

Overall, the findings within these analyses are not materially different than the results for the entire
market. All five credit components and the respective bankruptcy threshold values are indisputably
dispersed and intersect each other while the non-bankrupt observations are stretched over larger values,
and the bankrupt records are extended over lower quantities. Moreover, similar to the prior analysis,
credit components one, four, and five exhibit dispersion patterns that reasonably resemble the Normal
distribution, while credit modules two and three better describe truncated Normal distributions due to
their non-negative feasible domains.

A complementary appraisal of the minimum values, the maximum records, and the mean estimations
for the bankrupt and non-bankrupt industrial credit components further support our early presumptions for
dispersed distributions that intersect each other with universally higher quantities among the non-bankrupt
observations. We therefore conclude that our model assumptions are valid and truly hold in practice.

We now turn to explore the model’s functionality with individual cases of industrial firms. Since most
of the five credit components under investigation practically follow Normal disseminations, yet they are
not identically distributed, we deploy the next analyses through the prime model as presented in equation
(15). To uncover the minimum number k of credit component failures that may trigger a corporate default
we arbitrarily define Z* = 1.62 as the universal bankruptcy threshold."' For each observation we
examine whether the underlying firm remains operational under 32 different scenarios that independently
alternate the separate credit components towards their respective bankruptcy thresholds. Explicitly, we
inspect whether the corresponding firms default (their hypothetical Z-scores fall below Z*) or survive
(their theoretical Z-scores remain above Z*) when zero, one, two, three, four, or all five related credit
components are induced to fail (alternated to touch their respective timely threshold values).'

Subsequently, we compute the minimum required number k of credit component failures that can
trigger corporate default, while further identifying the precise credit components that may prompt this
hypothetical bankruptcy scenario. The SAS package further allows us to solve the nested integrals within
equation (15) through the ‘Proc IML’ procedure accompanied by the ‘call quad’ routine and then to
directly aggregate the ultimate probabilities of default.

To illustrate how PD diverge, we report sample results for the non-bankrupt industrial firms in Table
1. We also demonstrate the model’s performance over bankrupt industrial firms in Table 2. Within these
two tables and for each instance, we present the company’s ticker, the year, the quarter, the S&P credit
rating, the credit-related accounting measures, the complete Z-score, the five measures of credit
components, the minimum number k of credit component failures that may cause a bankruptcy, and the
respective probability of default. Sample cases are sorted within these two tables in consecutive order of
the probabilities of default.

negative. These are credit components one (

components two (
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To illustrate how the proposed model’s PD diverge among the non-bankrupt records, this table
reports a sample of representative findings from the 41,035 non-bankrupt industrial observations. For
each case, we present the company’s ticker, the year, the quarter, the corresponding S&P credit rating, the

credit-related accounting measures, the complete Altman (1968) Z-score, the five measures of credit
EBIT Sales

components computed as: Comp_1 ¥ ———, Comp 2 & ———,
) h Total Assets ) Total Assets
Market Val.ue of }.b“qulty Working Capltal’ Comp_5 der Retained Earnlngs’ the
Total Liabilities Total Assets Total Assets
minimum number k of credit component failures that may cause a bankruptcy, and the respective
probability of default PD as estimated within equation (15). These examples are sorted in consecutive
order of the estimated probabilities of default. For better assessment, we highlight eight instances of the
same company ‘AIR’ with a gray color. All share the same credit rating of ‘B-.” We further highlight
seven instances of the same company ‘CECE’ with bold fonts. All share the same credit rating of ‘C.’

Some interesting inquiries arise from these sample results. For example, the company ‘AIR’ appears
eight times in Table 1. In all of these eight instances (highlighted with gray color in the table), the firm
gets a credit rating of ‘B-,” while the Z-scores are mostly stable. Nonetheless, the respective PD
substantially vary across these cases due to additional information acquired regarding the stochastic
behavior of the credit components and the bankruptcy threshold values. Likewise, the company ‘CECE’
emerges seven times in Table 1. In all of these seven cases (accentuated with bold fonts in the table), the
firm gets a credit rating of ‘C,” while the Z-scores moderately diverge. Yet, the respective PD are
considerably different across these records. We further perceive that, as expected by the theory, lower PD
are continuously associated with higher minimum number k of credit component failures that may cause a
bankruptcy, and vice versa.

Additionally, we also notice that the Z-scores observed within Table 2 are not substantially different
than those detected in Table 1. However, the ultimate probabilities of default largely exhibit higher
values in the table of bankrupt industrial firms. A special attention should be given to the last two rows on
Table 2. These remarkable examples present two bankrupt firms having market value of equity more than
three times their respective total liabilities. Furthermore, these two corporations exhibit reasonable Z-
scores. Nonetheless, the proposed model assigns high probabilities of default due to its ability to capture
additional information regarding the stochastic behavior of the five different credit components.

Comp_3 & , Comp 4 <
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In Table 3 we further contrast the main statistical properties of the ultimate probabilities of default
between the two subsamples of bankrupt and non-bankrupt industrial firms as derived from the suggested
model. We thus report the number of observations, the minimum, the maximum, the mean, the standard
deviation, and the respective third and fourth central moments.

TABLE 3
COMPARATIVE PROPERTIES OF DEFAULT PROBABILITIES AMONG INDUSTRIAL
FIRMS

Bankrupt Observations Non-Bankrupt Observations

Number of Measures 1,565 40,035
Minimum 0.1762 0.0042
Maximum 0.9130 0.8817
Mean 0.7874 0.3607
Standard Deviation 0.0986 0.2141
Skewness -4.1049 -0.5889
Kurtosis 18.0680 -1.1086

To better determine the proposed model’s capabilities, this table compares the main statistical
characteristics of the estimated probabilities of default PD between the two subsamples of 1,565 bankrupt
and 40,035 non-bankrupt industrial observations from 1980 to 2010. We report the number of valid
measures, the minimum, the maximum, the mean, the standard deviation, as well as the respective third
and fourth central moments.

Throughout this comparison we provide strong evidence that empirical estimations of the model’s
probabilities of default among the bankrupt observations stretch from a higher minimum level to a higher
maximum height than for the non-bankrupt records. Furthermore, the mean PD appears to be significantly
higher, while the standard deviation is considerably lower within the set of bankrupt firms. The
subsample of bankrupt industrials further exhibits a lower negative skewness, which indicates a longer
left tail of the distribution, and a much higher kurtosis, which designates that more observations are
clustered near the peak."

These numerical measures illustrate the real added value of the current model when differentiating
between bankrupt and non-bankrupt candidates. The proposed scheme can clearly differentiate between
failure and non-failure nominees. In addition, the current theory utilizes additional vital credit-related
information, thus can accurately segregate the credit qualities of firms having similar credit ratings or
parallel Z-scores.

SUMMARY

In this study we explore a stochastic model that takes a new approach to assessing corporate credit
risk. The proposed theory is not a structural credit model per se, since it does not directly examine the
composition of available assets and outstanding debt issuances. On the other hand, although it draws input
from accessible accounting records, the current scheme cannot be considered a credit score as well. The
suggested model provides precise probabilities of default and it overcomes key drawbacks in common
linear credit grades. In particular, the present methodology realistically assumes a non-linear behavior of
the risky modules that eventually compose these customary credit scores. Hence, the current model
analyzes the complete distributional attributes and utilizes higher central moments of the relevant credit
components when studying the ultimate credit quality of a borrower. Through that, our theory implicitly
assumes a dependent configuration of the underlying credit components.

Essentially, the proposed model approximates the likelihoods for feasible intersections between most
recent observed values of credit elements and their respective estimated bankruptcy threshold quantities.
These prospects do not consider fixed appraisals. Instead, the model constantly monitors the development
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of the dispersal properties of these credit components as well as their likely default cutoff points. These
pragmatic presumptions assist us in capturing supplementary vital credit-related information.

When tested over an inclusive set of empirical observations, the model performs well. Not only is it able
to distinguish between comparable borrowers that hold similar credit scores or equal credit ratings, but the
current methodology can also predict with a good precision bankrupt instances up to two years in
advance.

The current theory is indeed more complicated than external credit scores or internal scorecards in use
by most financial institutions, mainly because it utilizes additional credit-related vital information.
Nonetheless, the suggested model draws input from accessible accounting data hence it is surely
measurable, verifiable, and programmable. Therefore, it can serve a large scale of lenders that desire to
achieve a much higher predictive power than other credit models towards likely business failures. The
present scheme becomes highly usable since it relies upon favorably realistic assumptions and concrete
statistical concepts. It can, therefore, assist banks to attain superior lending decisions and enhanced
profitability than otherwise obtained by using alternative existing credit methodologies.

ENDNOTES

1. See for example the Altman (1968) Z-score, the Ohlson (1980) O-score, the cash-flow-based score of
Aziz, Emanuel, and Lawson (1988), or the Altman (2010) Z-Metrics" methodology.

2. Although a standard variance-covariance matrix can certainly capture the interrelationships among
credit components, this somewhat naive approach misses the variability of corporate break points and
their coherent links to ad hoc macroeconomic conditions.

3. For instance, the Z-score contains n =5 credit components, the O-score includes n =9 credit
modules, the cash-flow-based score incorporates n =5 credit parts, and the Z-MetricsTM score
comprises n = 14 static and trend credit elements.

4. Alternatively, we can also set the threshold values to mark the event of Chapter 7 liquidation, yet it is
somewhat more intuitive to consider threshold values for Chapter 11 bankruptcy reorganization, since
common credit scores customarily refer to this realm.

5. Rice (2006) provides more explanations on this relatively modest arithmetical transition.

6. In the later empirical analysis we thoroughly corroborate this assumption.

7. The specific scaling procedure of the underlying credit score from which the current model draws
inferences dictates whether the credit components are identically distributed or not.

8. When directive credit component failures are appropriate, we can extend this idea to handle ordered
permutations as well.

9. The contrasted means of the second credit component makes this testimony somewhat less apparent.
However, even within this specific credit module, there are significantly more low-measures among the
bankrupt records, than within the non-bankrupt observations.

10. This may serve as an example in which a discretization procedure for the continuous model is
beneficial.

11. For purpose of robustness we test other critical values as well, yet it appears that optimal results are
obtained near the inclusive threshold Z-score of 1.62.

12. We test 32 possible scenarios since Z?:o (?) def ((5)) + (Fl)) + (g) + (g) + (i) + (g) = 32.

13. It would be difficult to further contrast these subsamples with parametric or non-parametric statistical
tests since both locational and distributional parameters vary across the groups.
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