

A Quality Comparison of Kauli Community Software for Higher Education

Charles W. Butler
Colorado State University

Abstract: The Kauli Foundation provides open source community software for universities. The
foundation is comprised of many universities, colleges, and commercial firms who have joined together to
develop an application portfolio for higher education administration. This research studied the software
quality of three Kauli applications; specifically, Kauli Financial System, Kauli Rice and Kauli Coeus. The
analysis of software quality utilized McCabe metrics as a reference base. McCabe metrics include
software metrics, cyclomatic complexity, essential complexity, and method design complexity, for
determining software quality and reliability.

INTRODUCTION

In the 2012, the growing market of open community software offered through the Kuali Foundation

was explored. (Butler, 2012) Indiana University is the founding partner in Kuali. Today, a growing
community of 77 universities, colleges and commercial firms have joined together to form the Kuali
Foundation Community Members. These organizations are building and sustaining open-source software
for higher education, by higher education. In addition, the 2012 article presented the results of analyzing
Kuali software quality using contemporary software metrics. The results of that analysis provided an
indication of whether the outcome of the consortium development strategy is one that is risky for a
university. This paper takes the analysis of Kauli software quality to an expanded level. In this paper, the
results are presented from analyzing additional Kauli software using contemporary software metrics. The
results of this analysis are presented to provide an expanded view of whether the outcome of the
consortium development strategy is one that is not risky or risky for a university.

KUALI FOUNDATION

As previously written, the Kuali Foundation is a consortium of interested universities, colleges and

commercial firms that have joined together to produce an enterprise software solution for the academic
business model. The Kauli Foundation utilizes a community source developed software acquisition
methodology. TABLE 1 contains a number of the Carnegie Mellon class universities participating in the
foundation. In addition, other leading commercial firms such as IBM and VMware are participants. The
consortium pools resources to develop and sustain many of the software systems needed for higher
education. This approach reduces costs and produces software that better fits institutional needs. The
Kuali Foundation is funded through a fee-based membership starting at $4,500 growing to $24,500 based
upon university budget size. These universities share information technology (IT) resources to develop
software and the software can be used by anyone without a purchase or maintenance fee. There are 15

lead universities who share IT resources and coordinate project activity as numerous “virtual” projects.
These institutions freely share work with the world as that fits the public service mission of colleges and
universities. Working collaboratively together, the outcome is shared best practices and reduced costs
beyond legacy approaches to purchased software. Since the 2012 article was published, the Kuali
membership has grown from 67 to 77 international research universities, community colleges, public and
private institutions, and commercial affiliates. (Kuali Foundation, 2014)

TABLE 1

CARNEGIE MELLON CLASS KAULI UNIVERSITY MEMBERS

Boston College Michigan State University
Boston University University of Arizona

Clemson University University of Arkansas
Colorado State University University of California - Berkeley

Cornell University University of Florida
Clemson University University of Hawaii
Cornell University University of Illinois
Indiana University University of Michigan

Kuali Software

The Kuali software is a portfolio of applications ranging from financial to mobile connectivity. Below
is a short summary of each application: (Kuali Foundation, 2014)

• Kauli Financial System (KFS) (2005): Financial software that meets the needs of Carnegie Class
institutions; current Version 5.0.2

• Kauli Coeus (2006): Research administration for grants administration to federal funding
agencies; current Version 5.2

• Kauli Rice (2007): Middleware products that integrate products allowing applications to be built
in an agile fashion; current Version 2.3.3

• Kauli Student (KS) (2007): Business needs of students, faculty and institutions throughout the
academic lifecycle; current Version 2.0.2

• Kauli Open Library Environment (2010): Integration of academic and research libraries for
managing and delivering intellectual information; current Version 1.0

• Kauli Mobility (2011): Connect mobile devices to a variety of campus systems; current Version
2.4

• Kauli People for the Enterprise: HR/Payroll System built by higher education for higher
education; current Version 2.0.1

• Ready (scheduled 2014): A business continuity planning tool
These applications are in various stages of development and implementation. Currently, all of the
consortium universities and colleges are using or are in deployment phases of the Financial System.

QUALITY SOFTWARE METRICS

Analyzing software quality can be subjective or objective methodology. As a basis for software

quality, NASA has a reference model given the agency’s mission critical, high performance standards.
The following three metrics are used in NASA’s Metrics Data Program (MDP) repository for determining
software quality and reliability. (NASA, n.d., p. 4)

• Halstead Metrics: Halstead's metrics assumes that a program should be viewed as an expression
of language. Halstead expressed mathematically the relationships among the number of variables,
the type of programming statements and the complexity of the code. Unfortunately, Halstead

metrics are difficult to compute. In order to be useful, a metric must be computed quickly and
easily understood. (Kaur, Minhas, Mehan, & Kakkar, 2009)

• McCabe Cyclomatic Complexity: McCabe’s cyclomatic complexity measures the number of
linearly-independent paths through a program method. The basic assumption is that software
complexity is directly related to the number of control paths generated by the code. This metric is
easy to understand. In fact, this metric has been criticized because it seems too simple. However,
the McCabe metric is an easy-to-compute, high-level measure of a program's complexity which
has been shown to agree with empirical data. (Kaur, Minhas, Mehan, & Kakkar, 2009)

• Lines of code metrics: The lines of code metric seems easy to measure. While a longer program
can be more prone to error than a short program, that is not always true. In addition, newer object
oriented coding techniques make it difficult to determine the actual lines of code executed.

Reviewing the competing metrics, McCabe’s cyclomatic complexity is an appropriate metric to

predict software reliability. It has been validated by two NASA studies. (NASA IV&V Facility, 2008). It
might also aid in projecting the cost of software support. There are several applications available to
measure cyclomatic complexity. However, McCabe IQ is an automated tool that has an array of graphical
presentations and is widely accepted by software developers. Therefore, McCabe IQ was chosen as the
automated tool for this study. Based upon prior research results, the following McCabe metrics were
determined for Kuali applications:

• Cyclomatic complexity: a measurement of the size of a software method’s decision logic.
Cyclomatic complexity, v, is determined for each software program’s methods. Research has
shown that when the cyclomatic complexity of a method exceeds 10, then its reliability degrades
exponentially. So, a v > 10 is considered low quality and riskier software. (McCabe, 1976)

• Essential complexity: a measurement of a software method’s decision structure or architecture.
Essential complexity, ev, is determined for each software program’s methods. Research shows
that when essential complexity of a method grows higher than 1, it is harder to maintain. So,
software with an ev > 3 is considered to be harder and more difficult to maintain than software
with ev = 1. (McCabe, 1976)

• Module design complexity: a measurement of a software method’s integration decision structure
with other methods. Module design complexity, iv, is determined for each software program’s
methods. Research shows that when module design complexity of a method grows high, the level
of integration testing is increased. More integration results in higher operational risk. So, when iv
is a high proportion of a method’s decision structure, it is an integration risk. (McCabe & Butler,
1989)

• Design complexity: a measurement of the decision structure which controls the invocation of
modules within the design. Design complexity, S0, is a quantification of the testing effort of the
calls in the design, starting with the top or root module, trickling down through subordinates and
exiting through the top. Design complexity is calculated as ∑iv. (McCabe & Butler, 1989)

• Integration complexity: a measurement of the integration tests that qualify the design tree.
Integration complexity, S1, is a quantification of a basis set of integration tests and measures the
minimum integration testing effort of a design. Each S1 test validates the integration of several
modules and is known as a subtree of the whole design tree. Integration complexity is calculated
as S1 = S0 – n + 1 where n = number of modules in the design. (McCabe & Butler, 1989)

KAULI FINANCIAL SYSTEM APPLICATION ANALYSIS

The first application studied was the Kauli Financial System. The Kuali Financial System project is

working to create and enhance a comprehensive suite of financial software that meets the needs of
Carnegie Class institutions. The financial system consists of 10 modules identified as follows:

1. Accounts Receivable (AR)
2. Budget Construction (BC)
3. Capital Asset Builder (CAB)
4. Capital Asset Management (CAM)
5. Contract and Grants (CG)
6. Effort Certification (EC)
7. Endowment Management (EM)
8. External (EX)
9. Labor Distribution (LD)
10. Purchasing/Accounts Payable (PUR/AP)

For the purposes of this study, these ten modules were analyzed using McCabe IQ. The McCabe parsing
was completed on Kauli Financial System, Version 4.1.1.

The Kauli Financial System application profile is summarized in TABLE 2. The profile includes
averages calculated based on the number of parsed methods. The relatively low averages are a result of
the large number of methods that fall below the McCabe cyclomatic complexity threshold of 10. (McCabe
Staff) In this case, the term threshold means the value of a metric above which there is an element of
interest, specifically about quality risks. Typically, below a threshold, metrics do not correlate with high
work effect, and code elements below a threshold usually do not require code to be reviewed or modified.
(McCabe Staff, n.d.)

TABLE 2

KAULI FINANCIAL SYSTEM APPLICATION PROFILE

Static Metric
Module Name

AR BC CAB CAM CG EC EM EX LD PUR/AP
Number of
Methods 3027 6183 874 2226 702 663 4536 433 2069 5918

Total SLOC 17753 31543 5725 12011 2649 3535 28099 1984 13365 37935
S0 5336 8431 1797 3833 940 1030 8011 673 3600 11463
S1 2310 2249 924 1608 239 368 3476 241 1532 5546

Total v 5565 8,669 1914 4012 968 1077 8506 721 3777 12150
Average v 1.84 1.40 2.19 1.80 1.36 1.62 1.88 1.67 1.83 2.05

Maximum v 65 39 21 39 17 12 26 30 64 84
Total ev 3856 6874 1234 2787 764 774 5750 518 2692 8118

Average ev 1.27 1.11 1.41 1.24 1.09 1.17 1.27 1.20 1.30 1.37
Maximum ev 65 30 13 18 43 12 26 21 54 43
Average iv 1.76 1.36 2.06 1.72 1.34 1.55 1.77 1.55 1.72 1.94

Maximum iv 65 32 17 38 13 11 49 22 60 82

As seen in TABLE 2, the Kauli Financial System exhibits positive software metrics. The total parsed
source lines of code is 191,994. As highlighted in orange, Budget Construction, Endowment
Management, and Purchasing/Accounts Payable are the three largest modules. Purchasing/Accounts
Payable is the largest module (S0=11,463), and it requires the most high level integration testing
(S1=5546). Parsing by McCabe IQ resulted in 26,631 methods with the following profile metrics:

• The average cyclomatic complexity ranged from 1.36 to 2.19.
• The average essential complexity ranged from 1.09 to 1.41.
• The average method design complexity ranged from 1.34 to 2.06.
• The total executable lines of code per module ranged from 2,649 to 37,935.

As indicated in green in Table 2, Contract and Grants is the highest quality module with the lowest
average v = 1.36 and is a well-structured method with the best maintainability characteristics given an
average ev = 1.09. Budget Construction has similar low cyclomatic and essential complexities with an
average v = 1.40 and ev = 1.11. Capital Asset Builder (highlighted in yellow) is the lowest quality module
with average v = 2.19 and average ev = 1.41. External Funds required the lowest amount of unit level
testing using McCabe Structure Testing Methodology, since its total v = 721. Contracts and Grants is also
the module that requires the least amount of high level integration testing because it has the lowest S1 =
239.

The Kauli Financial System risk profile in TABLE 3 contains the metrics for the high risk methods
for the application (methods with a v > 10). This table accentuates existing low quality within KFS code.
The total parsed source lines of code for high risk methods is 15,942 (8.3% of the total source lines of
code). For KFS, 375 methods (1.41% of the total number of methods) are considered high risk. Its
average cyclomatic, essential, and module design complexities are much higher than overall profile
metrics. Based on the high risk profile, one can conclude which modules are riskiest, poorly structured,
and require the highest integration effort.

TABLE 3

KAULI FINANCIAL SYSTEM RISK PROFILE (v(G)>10)

Static Metric
Module Name

AR BC CAB CAM CG EC EM EX LD PUR/AP
Total methods 3027 6183 874 2226 702 663 4536 433 2069 5918
High risk
methods 44 45 13 29 1 1 76 3 37 126
% high risk of
total methods 1.50% 0.72% 1.48% 1.30% 0.14% 0.15% 0.72% 1.68% 1.78% 2.12%
Total SLOC 17753 31543 5725 12011 2649 3535 28099 1984 13365 37935
SLOC 3140 2750 491 1532 58 43 4039 189 2594 7982
Total v 790 676 175 457 17 12 1173 63 718 2243
Average v 17.95 15.02 13.46 15.76 17.00 12.00 15.43 21.00 19.41 17.94
Max v 65 39 21 39 17 12 49 30 64 84
Total ev 353 267 104 156 11 12 636 40 332 994
Average ev 8.02 5.93 8.00 5.38 11.00 12.00 8.37 7.51 8.97 7.95
Max ev 65 30 13 18 11 12 26 21 54 43
Total iv 736 612 151 398 13 11 1012 49 667 2027
Average iv 16.73 13.60 11.62 13.72 13 11 13.32 16.33 18.03 16.22
Max iv 65 32 17 38 13 11 49 22 60 82

Contract and Grants, Effort Certification, and External Funds have only 1, 1, and 3 high risk methods,
respectively, and are not considered in the following analysis. The remaining key profile metrics were
calculated:

• The average cyclomatic complexity ranged from 13.46 to 19.41 with an individual method high
of 84.

• The average essential complexity ranged from 5.38 to 8.97 with an individual method high of 65.
• The average module design complexity ranged from 11.62 to 18.03.
• The total executable lines of code per module ranged from 491 to 7,982.

The high risk profile for KFS indicates that KFS has low quality, high risk methods. One module,
Purchasing Accounts Payable (highlighted in red), has a percentage of high risk methods to total methods
greater than 2%. Labor Distribution has the highest average v, ev, and iv at 19.41, 8.97 and 18.03,
respectively and has the riskiest, high risk methods. Purchasing/Accounts Payable has 126 high risk
methods whose average v is 17.94. Labor Distribution (also highlighted in red) has the lowest quality,
high risk methods with average v, ev, and iv of 19.41, 8.97, and 18.03, respectively. Capital Asset
Management and Budget Construction are the best structured modules with the highest maintainability
characteristics with average ev = 5.38 and 5.93, respectively.

KAULI RICE APPLICATION ANALYSIS

The second application studied was the Kauli Rice. The Kuali Rice software provides an enterprise

class middleware suite of integrated products that allows for applications to be built in an agile fashion.
This enables developers to react to end-user business requirements in an efficient and productive manner,
so that they can produce high quality business applications. Kauli Rice consists of seven modules
identified as follows:

1. Kauli Enterprise Notification (KEN)
2. Kauli Enterprise Workflow (KEW)
3. Kauli Identity Management (KIM)
4. Kauli Nervous System (KNS)
5. Kauli Rapid Development (KRD)
6. Kauli Rules Management (KRM)
7. Kauli Service Bus (KSB)

For the purposes of this study, these seven modules were analyzed using McCabe IQ. The McCabe
parsing was completed on Kauli Rice, Version 2.1.1.

The Kauli Rice application profile is summarized in TABLE 4. The profile includes averages
calculated based on the number of parsed methods. As seen in the table, Rice exhibits positive software
metrics. Rapid Development (orange in Table 4) is the largest module (S0=8453), and it requires the most
high level integration testing (S1=3624).

TABLE 4

KAULI RICE APPLICATION PROFILE

Static
Metrics

Module Names
KEN KEW KIM KNS KRD KRM KSB

Number of
Methods 351 2108 2707 2617 4830 1621 1248
Total SLOC 1024 6999 13746 18274 26409 9035 6076
S0 400 2574 4519 5782 8453 2843 1967
S1 50 467 1813 3166 3624 1223 720
Total v 400 2610 4711 6205 9117 2974 2093
Average v 1.14 1.24 1.74 2.37 1.89 1.83 1.68
Max v 10 11 47 83 55 16 22
Total ev 351 2183 3351 3747 6185 2074 1488
Average ev 1 1.04 1.24 1.43 1.28 1.28 1.19
Max ev 1 7 28 23 54 13 13
Average iv 1.14 1.22 1.67 2.21 1.75 1.75 1.58
Max iv 10 11 45 80 37 14 18

The total parsed source lines of code is 191,994. Parsing by McCabe IQ resulted in 15,482 methods
with the following profile metrics:

• The average cyclomatic complexity ranged from 1.14 to 2.37.
• The average essential complexity ranged from 1.00 to 1.43.
• The average module design complexity ranged from 1.14 to 2.21.
• The total executable lines of code per module ranged from 1,024 to 26,409.

Using McCabe software metrics as the criteria, Enterprise Notification (highlighted in green) is the

highest quality module with an average v = 1.14 and it is also the best structured module with an average
ev = 1.00 which indicates that it contains perfectly structured code. Enterprise Workflow is well-
structured with an average ev = 1.04. Nervous System (also highlighted in yellow) is the lowest quality
module with an average v = 2.37 and average ev = 1.43. Overall, the Rice modules are well-written with
methods that are maintainable, since the average ev for all the modules is 1.25. Enterprise Notification
required the lowest amount of unit level testing using McCabe Structure Testing Methodology, since its
total v = 400, and it is also the module that requires the least amount of high level integration testing
because it has the lowest S1 = 50. In fact, Enterprise Notification is a good example of size matters. It is
the smallest module in terms of lines of code and it exhibits high quality measurements for each software
metric.

The Rice risk profile in TABLE 5 displays the metrics for the high risk methods for this application
(methods with a v > 10). This table accentuates existing low quality within Rice code. The total parsed
source lines of code for high risk methods is 15942 (8.3% of the total source lines of code). For Rice, 375
methods (1.41% of the total number of methods) are considered high risk. Its average cyclomatic,
essential, and method design complexities are much higher than overall profile metrics. Based on the high
risk profile, one can conclude which methods are riskiest, poorly structured, and require the highest
integration effort.

TABLE 5

KAULI RICE RISK PROFILE (v(G)>10)

Static Metric KEN KEW KIM KNS KRD KRM KSB
Total methods 351 2108 2707 2617 4830 1621 1248
High risk
methods 0 1 24 84 90 11 5
% high risk of
total methods 0 0.00% 0.88% 1.30% 3.21% 0.68% 0.40%
Total SLOC 1024 6999 13746 18274 26409 9035 6076
SLOC 0 11 1462 4779 4477 415 225
Total v 0 11 476 1471 1535 139 82
Average v 0.00 11 19.83 17.51 17.06 12.64 16.40
Max v 0 11 47 83 55 16 22
Total ev 0 1 208 636 695 109 45
Average ev 0 1 8.67 7.57 7.72 9.91 9.00
Max ev 0 1 28 23 54 13 13
Total iv 0 11 455 1336 1301 120 72
Average iv 0 11 18.54 15.9 14.46 10.91 14.40
Max iv 0 1 45 80 37 14 18

Enterprise Notification and Enterprise Workflow have zero and one high risk methods, respectively, and
are not used in the below analysis. For the remaining high risk methods, the following key profile metrics
were calculated:

• The average cyclomatic complexity ranged from 12.64 to 19.83 with an individual method high
of 83.

• The average essential complexity ranged from 7.57 to 9.91 with an individual method high of 54.
• The average module design complexity ranged from 10.91 to 18.54.
• The total executable lines of code per module ranged from 225 to 4,779.

The high risk profile for Rice indicates that Rice has low quality, high risk methods. One module, Rapid
Development (shown as red), has a percentage of high risk methods to total methods greater than 2% at
3.21%. Identity Management has the highest average v = 19.83. Rapid Development has 90 high risk
methods whose average v = 17.06. Identify Management has the highest average ev = 8.67 which
indicates that it unstructured and less maintainable. Both Nervous System and Rapid Development have
high ev averages, and they have many high risk methods. Identify Management high risk methods exhibit
the highest level of method integration with an average iv = 18.54. Overall, Rule Management
(highlighted in yellow) has the highest quality, high risk methods.

KAULI COEUS APPLICATION ANALYSIS

The third application studied was the Kauli Coeus. Kuali Coeus for Research Administration is a

comprehensive system to manage the complexities of research administration needs from the faculty
researcher through grants administration to federal funding agencies. Kauli Coeus consists of 10 modules
identified as follows:

1. Award (AW)
2. Budget (BU)
3. Conflict of Interest (CI)
4. IACUS (IA)
5. Institutional Proposal (IP)
6. Institutional Review Board (IRB) Human Rights (IR)
7. Negotiations (NE)
8. Proposal and Budget Development (PBD)
9. Grants.gov S2S Submission (S2S)
10. Subawards (SU)

For the purposes of this study, these ten modules were analyzed using McCabe IQ. The McCabe parsing
was completed on Kauli Coeus, Version 5.0.1.

The Kauli Coeus application profile is summarized in TABLE 6. The profile includes averages
calculated based on the number of parsed methods. As seen in the table, Coeus exhibits positive software
metrics but there are three relative large modules, Award, Proposal and Budget Development, and
Grants.gov 2S2 Submission (all highlighted in orange). Award is the largest module with an S0 = 8525.
The total parsed source lines of code is 165,105.

TABLE 6
KAULI COEUS APPLICATION PROFILE

Static Metric
Module Name

AW BU CI IA IP IR NE PBD S2S SU
Number of
Methods 4758 2613 2078 2958 1645 5262 639 3323 1881 662
Total SLOC 27087 18510 9558 14154 8103 26535 3317 21313 33351 3177
S0 8525 5429 3261 4505 2638 8718 1079 6333 7348 983
S1 3758 2817 1184 1548 994 3457 441 3011 5488 322
Total v 9281 5850 3416 4789 2823 9187 1133 6746 7912 1050
Average v 1.95 2.24 1.64 1.62 1.72 1.75 1.77 2.02 4.25 1.59
Max v 57 97 23 21 34 42 29 43 118 37
Total ev 6221 3867 2491 3522 2014 6498 790 4404 3388 811
Average ev 1.30 1.48 1.20 1.19 1.22 1.23 1.24 1.33 1.82 1.23
Max ev 44 97 16 15 34 29 23 43 59 36
Average iv 1.79 2.08 1.57 1.52 1.60 1.66 1.69 1.91 3.95 1.48
Max iv 57 33 23 21 27 42 27 33 105 27

Parsing by McCabe IQ resulted in 25,819 methods with the following profile metrics:
• The average cyclomatic complexity ranged from 1.59 to 4.25.
• The average essential complexity ranged from 1.19 to 1.82.
• The average module design complexity ranged from 1.48 to 3.95.
• The total executable lines of code per module ranged from 3,177 to 27,087.

The averages and upper limits of v, ev, and iv are higher than the Financial System and Rice.

Subawards (colored green in Table 6) is the highest quality module with the lowest average v = 1.59, a
relative low average ev = 1.23, and the lowest average iv = 1.48. Grants.gov S2S Submission is lowest
quality module with the highest average v = 4.25, the highest average ev = 1.82, and the highest iv = 3.95.

The Coeus risk profile in TABLE 7 contains information about low quality methods (methods with v
> 10). The total parsed source lines of code for high risk methods is 27,799 (16.8% of the total source
lines of code). For Coeus, 511 methods (2.00% of the total number of methods) are considered high risk.
Its high risk average cyclomatic, essential, and module design complexities are much higher than overall
profile metrics.

For the evaluated high risk methods, the following key profile metrics were calculated:
• The average cyclomatic complexity ranged from 14.80 to 22.83 with an individual method

high of 97.
• The average essential complexity ranged from 5.76 to 14.50 with an individual method high

of 97.
• The average module design complexity ranged from 10.85 to 18.33.
• The total executable lines of code per module ranged from 405 to 19,108.

Highlighted in red, Budget and Grants.gov S2S Submission have the highest % of high risk to total
methods greater than 2% at 2.37% and 11.06%, respectively. Coeus modules have an average v = 17.94,
which is high and risky. Five modules have average ev > 9.00, and the application has high method
integration complexity with four module average iv > 15. Based on the high risk profile, one can conclude
that Coeus high risk modules have lower quality than the Financial System and Rice applications.

TABLE 7
KAULI COEUS RISK PROFILE (v(G)>10)

Static
Metric

Module Name
AW BU CI IA IP IR NE PBD S2S SU

Total
methods 4758 2613 2078 2958 1645 5262 639 3323 1881 662
High
risk
methods 65 62 18 29 18 42 9 54 208 6
% high
risk of
total
methods 1.37% 2.37% 0.86% 0.98% 1.09% 0.80% 1.41% 1.63% 11.06% 0.91%
Total
SLOC 27087 18510 9558 14154 8103 26535 3317 21313 33351 3177
SLOC 3102 3309 691 727 849 1673 457 2663 19108 405
Total v 1107 1178 271 296 290 626 149 860 4120 137
Averag
e v 17.03 19.00 15.06 14.80 16.11 14.90 16.56 15.93 19.81 22.83
Max v 57 97 23 21 34 42 29 43 118 37
Total ev 596 671 141 120 163 313 88 409 1198 87
Averag
e ev 9.17 10.82 7.83 6.00 9.06 7.45 9.78 7.57 5.76 14.50
Max ev 44 97 16 15 34 29 23 43 59 36
Total iv 845 935 232 217 218 507 136 762 3813 102
Averag
e iv 13.00 15.08 12.89 10.85 12.11 12.07 15.11 14.11 18.33 17.00
Max iv 57 33 23 21 27 42 27 33 105 27

CONCLUSIONS

As articulated earlier, the objective achieved by this project was an analysis of software code

produced by the Kuali Foundation for universities and colleges. Since it was conceived in 2004, the Kuali
Foundation has successfully implemented six enterprise software modules for higher education on a
timely, cost-effective manner including:

• Financial System (2005): Financial software that meets the needs of all Carnegie Class
institutions

• Coeus (2006): Research administration for grants administration to federal funding agencies
• Student (2007): Business needs of students, faculty and institutions throughout the academic

lifecycle
• Rice (2007): Middleware products that integrate products allowing applications to be built in an

agile fashion
• Open Library Environment (2010): Integration of academic and research libraries for managing

and delivering intellectual information
• Mobility (2011): Connect mobile devices to a variety of campus systems

Prior to the 2012 study, no research had been completed of the Kuali software analyzing the code
quality. In that study four Financial System modules were analyzed. In this study, three Kauli applications
(Financial Systems, Rice, and Coeus) containing 27 modules were analyzed for their quality attributes.
McCabe IQ was used to determine the McCabe metrics including cyclomatic, essential, and module
design complexities. Overall, the code quality for Financial System and Rice was found to be good
quality with about 98.5% of the software methods exhibiting cyclomatic complexities less than or equal
to 10. Coeus exhibited a higher average v = 2.00 which borders on the McCabe threshold for low
application quality.

There are low quality methods. When high risks methods were examined, the average v, ev, and iv
climbed measurably. Overall, the findings showed that risker software as a percentage of total software
methods for the four studied methods is as follows:

• Kauli Financial System - 1.41%
• Kauli Rice - 1.41%
• Kauli Coeus - 2.00%

This research shows there are low quality methods in the Kauli applications, specifically in Kauli Coeus.
Two Coeus methods, Budget and Grants.govS2S Submission, have a poor ratio of high risk to total
methods. These two modules also have riskier high average v, ev, and iv. Since Grants.govS2S
Submission is granularly very large, these negative McCabe metrics are potentially troubling. For high
risk modules, high average and individual v and ev were observed. Coeus lead the way with high
averages (mean v and mean ev of 22.83 and 14.50, respectively). Coeus also had the highest individual
method v and ev of 97 and 97, respectively. Overall, the Kuali Foundation continues to serve the
university community with enterprise software targeted specifically for university and college business
models, and it is delivering cost-effective, quality processes to the higher education community. There
are, however, pockets of low quality that should be assessed, monitored, and managed to avoid long term
quality degradation.

REFERENCES

Aberdour, M. (2007). Achieving Quality in Open Source Software. IEEE Software, 58-64.
Butler, C. W. (2012). The Role of Community Source Software in University Business Models. Journal

of Higher Education Theory and Practice, 12(6), 9.
CURL Staff. (05, 14 2010). MIDESS Functiona and Technical Requirements Specification. Retrieved

2011, from http://ludos.leeds.ac.uk/midess/MIDESS%20workpackage%202%20-
%20Functional%20and%20Technical%20Requirements%20Specification.pdf

Hanganu, G. (2011, 03 11). OSS Watch Open Source Software Advisory Service. Retrieved 2011, from
www.oss-watch.ac.uk: http://www.oss-watch.ac.uk/resources/communitysource.xml

Jeffery, M. (n.d.). Northwestern University. Retrieved from http://www.kellogg.northwestern.edu/:
http://www.kellogg.northwestern.edu/faculty/jeffery/htm/publication/ROIforITProjects.pdf

Kaur, K., Minhas, K., Mehan, N., & Kakkar, N. (2009). Static and Dynamic Complexity Analysis of
Software Metrics. World Academy of Science, Engineering and Technology, 159-161.

Koha. (1999). Koha. Retrieved from http://koha.org/: http://koha.org/
Kuali. (2010). Kuali - OLE. Retrieved from www.kuali.org: http://www.kuali.org/ole
Kuali Foundation. (2014). Kuali Foundation. Retrieved from www.kuali.org: http://www.kuali.org/kc
McCabe Staff. (n.d.). McCabe Demostration Page. Retrieved 2011, from www.mccabe.com:

http://www.mccabe.com/contact_iqDemo.htm
McCabe Staff. (n.d.). McCabe IQ Glossary of Terms. Retrieved from www.mccabe.com:

http://www.mccabe.com/iq_research_iqgloss.htm#t
McCabe Staff. (n.d.). McCabe Metrics. Retrieved 2011, from www.mccabe.com:

http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf

NASA IV&V Facility. (2008, 6 10). Metrics Data Program - NASA IV&V Facility - Complexity Metrics.
Retrieved 2011, from www.nasa.gov: http://mdp.ivv.nasa.gov/complexity_metrics.html

NASA. (n.d.). Overview of Software Reliability. Retrieved 2011, from Goddard Space Flight Center:
http://sw-assurance.gsfc.nasa.gov/disciplines/reliability/index.php

NLM Digital Repository Evaluation and Selection Working Group. (2008, 12 02). Recommendations on
NLM Digital Repository Software. Retrieved 2011, from
http://www.nlm.nih.gov/digitalrepository/DRESWG-Report.pdf

Shelly, G. B., & Harry, R. (2010). Systems Analysis an Design. Course Technology.
Stoneburner, W. (2010, 03 31). SMERFS Software Reliability Overview. Retrieved 2011, from

www.slingcode.com: http://slingcode.com/smerfs/overview.php
Technical Council. (2007, 12). Kuali Standards Version 1.2. Retrieved 2011, from http://kuali.org:

http://kuali.org/files/pdf/KualiStandards.pdf
Traylor, P. S. (2006, 02 13). http://www.infoworld.com. Retrieved 2011, from InfoWorld:

http://www.infoworld.com/print/20676
Wheeler, B. (2007). Open Source 2010 Reflections on 2007. EDUCAUSE Review, 49-67.
Wheeler, B., & DeStefano, J. (n.d.). Mitigating the Risks of Big Systems. Retrieved from

http://www.nacubo.org/:
http://www.nacubo.org/Business_Officer_Magazine/Magazine_Archives/July-
August_2007/Mitigating_the_Risks_of_Big_Systems.html

Wikipedia. (2010, 08 11). Wikipedia - The Free Encyclopedia. Retrieved 2011, from www.wikipedia.org:
http://en.wikipedia.org/wiki/Community_source

