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The concept of optimal enrollments has been studied extensively in enrollment management settings; 
however, most studies approach the problem qualitatively. Due to the complexity of the problem, a 
qualitative decision-making process can be overwhelming. An alternative is to use a quantitative 
approach. This paper will suggest a way of modeling the problem of optimal enrollments using 
mathematical optimization techniques.   
 
INTRODUCTION 
 

The concept of optimal enrollments has been studied extensively in enrollment management settings; 
however, most studies approach the problem qualitatively. Due to the complexity of the problem, a 
qualitative decision-making process can be overwhelming. An alternative is to use a quantitative 
approach. This paper will suggest a way of modeling the problem of optimal enrollments using 
mathematical optimization techniques. This approach has the benefit of being able to handle many 
variables and constraints at once and to uncover patterns that may be difficult to discern using qualitative 
approaches. 

The model assumes that a decision must be made each year as to how many students of a given type 
to admit. Students may be classified according to academic qualifications, program of study, whether or 
not they would live on campus, whether they come from a primary or secondary market, or any other 
characteristic that is considered when making admissions decisions. 

The problem formulation also assumes that students of different types act differently with respect to 
the institution; for example, if admitted, different types of students will enroll with different probabilities. 
Even among students who do enroll when admitted, different student types will progress at various rates 
through the system; for example, those students with stronger academic qualifications may have a higher 
chance of persisting and graduating. The problem with trying to mathematically describe such a system is 
that it is riddled with uncertainty.  If a student is admitted, he may or may not enroll. If he enrolls for one 
year, he may or may not continue to his second year, and so on. When a student is admitted, it is not 
known whether or not that student will be successful; however, we may be able to estimate the student’s 
chances of being successful based on the expected behavior of students of the same type. 

This paper introduces a mathematical model that allows us to represent the uncertainty associated 
with the admittance, enrollment, and retention of students in an institution with common random 
variables. The model will also allow us to “optimize” our admissions decisions, while satisfying the 
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constraints imposed. While it is unlikely that the model will be used directly by institutions to dictate 
admissions decisions, it may provide useful insight that could help admissions personnel make well-
informed decisions and understand the implications of those decisions. 
 
Description of Analysis 

The model assumes that we can predict the behavior of the students who have applied based on the 
behavior of similar students who are or were already at the institution. That is, we need to be able to 
predict the future based on the past. In order to do this, we must somehow classify students into groups or 
types in order to track their behavior. To that end, we assume that students may be classified into types 
based on criteria that are used in admissions decisions. These criteria might include high school grade 
point average, standardized test scores, and whether or not they will live on campus or pay in-state or out-
of-state tuition. The criteria used will vary among institutions. 

Depending on the number of criteria used and the number of levels of classification within each (e.g. 
high GPA, medium GPA, or low GPA) there may be hundreds of different student types to consider, 
some of which may have only a few students. It is obviously much too complex to deal with hundreds of 
types; therefore, an effort can be made to reduce the number of student types by combining groups who 
act similarly with respect to the institution. By this we mean that the values of the yield, graduation and 
retention rates for the groups to be combined are not statistically different. If this is the case, then the 
combined group should act similarly to its member groups. If we do not combine groups who do not act 
similarly, then in the end we should be left with a small number of groups who are differentiated by their 
yield, retention, and graduation rates. This analysis can be done using Analysis of Variance (ANOVA) 
and should preferably be based on several cohorts to give as large a data set as possible. 

Once we have reduced the student body to a small number of groups based on all cohort data 
available, we need to test the assumption that the behavior of these groups does not vary statistically from 
year to year. If this is the case, then it will be valid to predict the behavior of students of a given type who 
we would like to admit based on the behavior of past students of the same type. Therefore, for each 
student group or type, we can compare the yield, retention and graduation rates over several years to see if 
there are statistical differences over time. These tests (one for each student type and each rate) can be 
done by using a Chi Square test for a difference in proportions.  If these tests hold, then the use of the 
model is validated.  
 
Analysis of Institutional Data 

The analysis described above was done on data for students enrolled in moderately sized mid western 
comprehensive university in the 1999-2005 cohorts. The criteria used to classify students were high 
school GPA, SAT (or ACT) scores, in-state vs. out-of-state, market (or yield level), and whether or not 
the student would live on campus. The last attribute could not be measured directly, but another variable 
representing whether or not the student lived within 50 miles of campus was used as a proxy. This is 
because the institution under analysis has a practice that students living further than 50 miles away must 
live in the residence halls. 

When the initial classifications were done, there were 480 different student types present in the data.  
Groups were then combined using ANOVA in the following manner. The yield, retention (1-year through 
7-year) and graduation rates (3-year through 7-year) of types that differed on only one variable, while all 
others remained constant, were compared. If there were no significant differences between the groups, 
then it was determined that that variable had no effect and the groups were combined. This analysis 
resulted in 25 distinct student types. 

The 25 groups were then tested to determine whether the yield, retention and graduation rates varied 
from year to year. The results showed that, with the exception of a few outliers, that the rates remained 
very stable over the past several years. Thus, it was determined that the assumptions of the model held.  
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CONSTRAINTS INVOLVED IN ADMISSIONS DECISIONS 
 

Since we found several student groups whose members act similarly to each other, we no longer need 
to look at each student individually in the admissions decision, but can now consider the number of 
students of each type to admit. These decisions must be made subject to certain constraints.  There are 
two types of constraints that must be considered. Some of the constraints apply to the number of students 
we admit; for example, we cannot admit more students than we have applications. The others will be on 
the number of students who enroll, which is a random quantity based on the number of students we admit. 
We discuss each type of constraints below. 
 
Constraints on the Decision Variables 

Because we now only want to decide on the number of students of each type to admit, we will call 
these variables our “decision variables”. There are several types of constraints on the decision variables 
that must be considered when admissions decisions are made. Some are real; for example, that we cannot 
admit more students that we have applications. Others are self-imposed; for instance, we may not want to 
admit too many remedial students who will require more resources. We call the latter constraints 
“capacity” constraints because they assume that the institution only has a certain capacity for certain types 
of students. 

If we let xi be the number of students of type i who we decide to admit, and let Ai be the number of 
applications from students of type i that we have, then for each student type, we will have the constraint:  
 

xi ≤ Ai   for all student types i 
 

Similarly, suppose there are certain upper bounds Bi on the number of students of type i that we wish 
to admit for some (not necessarily all) student types.  Then our capacity constraints will be: 
 

xi ≤ Bi   for some student types i 
 
Capacity Constraints on the Outcome Variables 

At the time when we admit a group of students, we do not know how many will enroll, and of those 
who do, how many will continue to enroll. These quantities are uncertain, and we just have to “wait and 
see” how they turn out. For this reason, we refer to the number of students who enroll as “outcome” 
variables. 

There are several types of constraints that we might want to enforce on these outcome variables. One 
possible type of constraint might be capacity constraints similar to those we had on our decision variables. 
For example, you may want to limit the size of your freshman class. If you admitted too many of some 
types of students, for example those with high yield rates, you may end up exceeding that limit. Similarly, 
you may have a freshman dorm that houses all on campus freshmen. If too many on-campus freshmen 
were to enroll, then you would have overflow in your dorm. 

The problem with trying to impose constraints on these outcome variables is that they are random 
quantities. We do not know with 100% certainty how many freshmen will enroll; thus, we can never 
ensure with 100% certainty that our capacity constraints will be met. However, based on our assumption 
that future students will behave similarly to past students of the same type, we can ensure that we will 
make a decision that will result in our constraints being met with a high degree of probability, say 95%. 

We will discuss how this is done later in the discussion. However, at this point we can express these 
capacity constraints in mathematical terms. To that end, let Xi be the random number of students of type i 
who enroll as freshmen, and let U be the upper bound on the size of the freshman class. Then, if we sum 
the Xi over all types i, it will give us the total number of freshmen who enroll. Thus, the following 
constraint insists that we meet this bound on the size of the freshman class with a high degree of 
probability, represented by α1: 
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Prob(∑Xi ≤ U) ≥ α1 
 

Similarly, we can impose capacity constraints for individual student types. If we let Ui be the upper 
bound on the number of students of type i who will enroll, then we have: 
 

Prob(Xi ≤ Ui) ≥ α2 
 
where α2 is a probability close to 1. Note that α2 does not need to be the same as α1. Note also that we 
could create similar constraints to impose bounds on subsets of student types as well. 
 
Quality Constraints on the Outcome Variables 

When a student fails to persist, it affects institutional measures of success such as retention and 
graduation rates. Therefore, when we admit a group of students, we would like to be reasonably sure that 
the yield, retention and graduation rates that will result for that cohort will be acceptably high. These rates 
are based on the students who enroll, which is a random quantity, so we can never ensure with 100% 
accuracy that they will be met. However, using the past behavior of students to predict future behavior of 
students of the same type, we can ensure that these constraints will be met with a high degree of 
probability. 

For example, suppose that you wish to satisfy, with a high degree of probability, the following 
constraints involving the outcome variables representing your yield, retention and graduation rates: 
 

• that your yield rate, represented by Y, is sufficiently high, say at least py (where 0 ≤ py ≤ 1). 
• that your first year retention rate, R1, is sufficiently high, say at least pr (where 0 ≤ pr ≤ 1). 
• that your four year graduation rate, G4, is sufficiently high, say pg (where 0 ≤ pg ≤ 1). 

 
Then, your constraints would be expressed as: 
 

Prob(Y   ≥ py) ≥ α3 
Prob(R1

  ≥ pr) ≥ α4 
Prob(G4 ≥ pg) ≥ α5 
 

where α3, α4, and α5 are (possibly different) probabilities close to 1. Note that we could also impose 
restrictions on these rates for specific student types instead of on the entire freshman class. 

While the constraints on the decision variables are straightforward because you simply limit the 
number admitted to a certain level, the constraints on the outcome variables are more complex because 
they involve random variables. We will see later in the discussion how the assumptions made in the 
model will allow us to easily deal with these random constraints. 
 
THE OBJECTIVE FUNCTION 
 

The portions of the model that we have discussed so far allow us to ensure with a reasonable degree 
of confidence that the constraints we specify will be met. Subject to these constraints, we would like to 
admit the “optimal” number of students of each type. So, what is “optimal”, or in other words, what is our 
objective? 
 
Measures of Optimality 

There are several possibilities for what would make up an optimal freshman class, depending on the 
institution and its mission. Note that each of these measures of optimality will be random quantities based 
on the outcomes variables because we are measuring the optimality of those who enroll and we do not 
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know if the students will enter the institution and how long they will stay enrolled. Some possible ways to 
measure the optimality or desirability of a class are as follows: 
 

1. Quality of the freshman class, as measured by pre-entry attributes such as high school GPA and 
standardized test scores, or by behaviors after enrolling, such as retention and graduation rates. 

2. Revenues generated by the incoming class over the course of their tenure at the institution, which 
may be important to institutions with limited financial resources. Note that revenues also 
incorporate to some extent quality aspects such as retention because we are looking at revenues 
generated over the course of several years, not just in the first year. Thus, students who are likely 
to be retained will be more desirable because they will generate revenues over several years. 

3. A Combination of Quality and Revenues which would involve a weighted average of the two 
measures. 

4. How well the freshman class conforms to some ideal class whose mix is defined by the 
institution. 

5. How well the freshman class meets certain institutional goals, such as increasing the number of 
high quality students or increasing recruitment in new markets.   

 
Calculate some utility to the distance of each type to its desired level. Then, a total utility score is 

computed so that solutions can be compared. The quality measure is very valuable, but to some extent is 
dealt with in the constraints where we ensure certain levels of retention and graduation rates. Thus, here 
we will discuss the revenue measure, which has the added benefit of having a simple form. 
 
Objective Function Involving Revenues Generated 

In this type of model, we wish to express the measure of optimality in a form that will allow us to 
compare different decisions and decide which is best. In this context, such an expression is called an 
objective function. Here, we wish to express our objective function in terms of the outcome variables Xi.    

In order to express the revenues generated over the students entire tenure at the institution, we need to 
distinguish the number of students who enroll in their first year from the number who enroll in their 
second, third, fourth, etc. Thus, let Xi(n) be the number of students of type i who enroll in their nth year, 
for n = 1, 2, 3, … (Since Xi, which we defined as the number of students of type i enrolling in their first 
year, can also be written as Xi(1), we will henceforth refer to it in the longer notation to emphasize its 
relation to the other random variables Xi(n).) Also, let ri(n) be the amount of revenues generated by 
students of type i in year n. Note that the quantity ri(n) is just a number. It is varies by student type 
because different students may pay different amounts for tuition (in-state vs. out-of-state, on-campus vs. 
commuter, etc.). The value of ri(n) is also allowed to vary from year to year to account for tuition hikes 
and other changes in fees. 

In year n, each student of type i will generate ri(n) dollars in revenue; therefore, the total amount of 
revenue generated by students of type i in year n is ri(n)•Xi(n). If we sum over all values of n, we will get 
the total revenues generated by students of type i over their entire tenure at the institution. Lastly, if we 
sum this quantity over all values of i, we will get the total revenues generated by all students we admit, 
which we denote by r. Thus, our objective function is: 
 

r = ∑ ∑ ri(n)•Xi(n) 
 

In order to find the optimal freshman class, we will want to maximize this quantity. As was true with 
the constraints on the outcome variables, this quantity is complex because it involves random variables 
representing the number of students who enroll, and as such is itself a random variable. We will not be 
able to maximize this quantity directly because we do not know the outcome of the Xi(n). For that reason, 
we will want to maximize a function of this quantity that we can know in advance. Although there are 
many possibilities, the simplest approach would be to maximize the expected value, or mean, of this 
random variable. Although the expected value is no longer a random variable, it is still a complex 
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quantity. Later in the discussion, we will show how the assumptions made in the model allow us to 
effectively deal with this aspect of the model. 
 
THE MODEL 
 

If we put together the various components we have discussed, we have the following mathematical 
model for the admissions decision: 
 

Maximize E [ ∑ ∑ ri(n) Xi(n) ] 
             i   n 
Subject to: 
 
xi ≤ Ai   for all student types i 
 
xi ≤ Bi   for some student types i 
 
Prob(∑Xi  ≤  U)  ≥  α1 
 
Prob(Xi  ≤  Ui)  ≥  α2 
 
Prob(Y  ≥  py)  ≥  α3 
 
Prob(R1

  ≥ pr)  ≥  α4 
 
Prob(G4  ≥  pg)  ≥  α5 
 
where xi ≥ 0  for all student types i and 
0 ≤ α1, α2, α3, α4, α5, py, pr, pg ≤ 1 

 
The above problem, which consists of maximizing a quantity subject to constraints containing 

probabilities is a mathematical construct called a stochastic program. Although there are methods for 
solving such problems, they tend to be challenging problems to solve because of the uncertainty involved. 
The Xi(n) are random quantities that depend on the number of students of that type who were admitted. 
Furthermore, the yield retention and graduation rates will all be calculated based on these Xi(n). Thus, in 
order to make sense of this complex model, we need to get a handle on these random variables 
represented by the Xi(n). We will discuss in the next section how these quantities can be expressed in 
terms of common distributions in order to greatly simplify the problem. 
 
Probability Distributions of the Outcome Variables Xi(n) 

Recall that the random variables Xi(n) represent the number of students of type i who enroll in their 
nth year. We know that the probability distribution of the random variables of Xi(1) are related to the 
number of students of type i who we admit, namely xi. If we assume that each of these xi students acts 
independently of the others, and that each student of type i who is admitted will enroll with probability yi, 
then Xi(1) will be have a Binomial distribution with n = xi and p = yi. 

Furthermore, the value of Xi(2) turns out to be the number of students of the xi admitted who enroll 
the first year and the second year (assuming continuous enrollment). Thus, students must enroll in their 
first year, which they do with probability yi, and then also enroll in their second year, which they do with 
probability equal to the first year retention rate denoted by Ri

1. Therefore, Xi(2) also has a Binomial 
distribution with parameters n = xi and p = yi Ri

1. 
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In general, a student who is admitted enrolls in period n with probability yi Ri
n  where Ri

n is the nth 
year retention rate of students of type i. Assuming each student acts independently, we will have for all n 
= 1,2,3,… 
 

Xi(n) ∼ Binomial (n = xi,  p = yi Ri
n). 

 
Furthermore, if the group sizes are sufficiently large, then this Binomial distribution can be 

approximated by a normal distribution. Generally, if the procedure described earlier results in a relatively 
small number of large groups, then this approximation will be valid.  In this event, we have the following 
approximate probability distribution for Xi(n): 
 

Xi(n) ≈ Normal (µ = xi yi Ri
n
 ,  σ2 = xi yi Ri

n (1 - yi Ri
n)) 

 
Since the distribution of the random variables follows a normal distribution, and independent normal 

random variables can be added, it turns out that the constraints in the model that involve probabilities can 
be replaced with equivalent constraints that have no probabilities in them. In addition, we will be able to 
explicitly express the expected value in the objective function. Thus, by exploiting the properties of the 
normal distribution, we can reduce the above stochastic program to a much more manageable problem. 
We now explain the procedure that allows us to do this. 
 
EXPLOITING PROPERTIES OF THE NORMAL DISTRIBUTION TO SIMPLIFY THE 
MODEL 
 
The Objective Function 

Recall that the objective function in the model involves an expected value of a sum of random 
variables. In general, this may not be an easy quantity to describe; however, when the variables added are 
independent and have normal distributions, the sum of the random variables will also be normally 
distributed. This is the case we have here. Thus, using the linearity of expected value, we have: 
 

E [ ∑ ∑ ri(n) Xi(n) ] = ∑ ∑ ri(n) E[Xi(n)] 
 

As we discovered above, the mean or expected value of each Xi(n) is xi yi Ri
n.  Therefore: 

 
E [ ∑ ∑ ri(n) Xi(n) ] = ∑ ∑ ri(n) E[Xi(n)] = ∑ ∑ ri(n) xi yi Ri

n = ∑ xi yi ∑ ri(n) Ri
n 

i  n         i  n                         i  n           i         n 
 

Since ri(n) and Ri
n are just numeric values that are determined by the physical system we are 

modeling, their sum over all values of n is just a function of i; therefore, let us express this sum as ci. 
Similarly, yi is just a numeric value as well; thus, the expected value in the objective function reduces to a 
simple linear function of the decision variables xi, namely: 
 

E [ ∑ ∑ ri(n) Xi(n) ] = ∑ yi ci xi
 

          i 
where ci and yi are constants. As a result, we have removed all probabilistic quantities from the objective 
function. 
 
Capacity Constraints on the Outcome Variables Xi(1) 

In the previous section, we were able to remove all probabilistic attributes of the objective function by 
exploiting the properties of the normal distributions that govern the random variables Xi(n). Using this 
same idea, we will also be able to deal with the probabilistic constraints involving Xi(1), namely: 
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Prob(∑Xi(1)  ≤  U)  ≥  α1     (1) 
Prob(Xi(1)  ≤  Ui)  ≥  α2       (2) 

 
Let us first deal with constraint (2). We know from our earlier discussion that Xi(1) ≈ Normal ( µ = xi 

yi Ri
1

 ,  σ2 = xi yi Ri
1 (1 - yi Ri

1) ). Therefore, by transforming this normal distribution into a standard 
normal, we have that (2) is equivalent to: 
 

Prob([ Xi(1) - µ ] / σ  ≤  [ Ui - µ ] / σ) ≥ α2   or  Prob(Z  ≤  [ Ui - µ ] / σ) ≥ α2 
 
where µ and σ are linear functions of the decision variables xi. Since we now just have a standard normal 
random variable, we can use any normal table to find the value of [ Ui - µ ] / σ such that the cumulative 
probability will be at least α2. For example, if α2 is 0.95, then [ Ui - µ ] / σ  ≥ 1.96. Therefore, the 
probabilistic constraint (2) is equivalent to the following non-probabilistic constraint: 
 

[Ui - µ] / σ  ≥ F-1(α2) 
 
where F-1 is the inverse standard normal distribution. Rearranging the above inequality, we have that: 
 

Ui - µ  ≥  σ F-1(α2) 
 
which is equivalent to: 
 

[Ui - µ] 2  ≥  σ2 [F-1(α2)]2 

 
if Ui ≥ µ = xi yi Ri

1. Thus, we are left with the following two constraints that are equivalent to the original 
probabilistic constraint (2): 
 

[Ui - xi yi Ri
1] 2  ≥ (xi yi Ri

1 (1 - yi Ri
1)) [F-1(α2)] 2 

 
Ui ≥ xi yi Ri

1. 

 
These constraints have no probabilistic elements, and the first is quadratic in the decision variables xi, 

while the second is linear. 
A similar method can be used for constraint (1) to reduce it to two non-probabilistic constraints in the 

decision variables. The only difference is that: 

  
∑Xi(1) ≈ ∑ Normal (µ = xi yi Ri

n
 ,  σ2 = xi yi Ri

n (1 - yi Ri
n)) 

≈ Normal (∑ µ = ∑ xi yi Ri
n

 , ∑σ2 = ∑ xi yi Ri
n (1 - yi Ri

n)) 
 
and so the parameters µ and σ used in the above method would take on different values. 
 
Constraints on the Quality Measures Y, R1 and G4 

The probabilistic constraints involving the yield, retention and graduation rates can also be replaced 
with non-probabilistic constraints using the properties of the normal distribution. Recall that the yield rate 
is the percentage of those admitted who enroll in their first year, so Y = ∑Xi(1) / ∑xi. Therefore, Y ≥ py is 
equivalent to ∑Xi(1) ≥ py ∑xi and the constraint:  
 

Prob(Y  ≥  py) ≥ α3 
 

52     Journal of Higher Education Theory and Practice vol. 13(1) 2013



is equivalent to: 
 

Prob(∑Xi(1) ≥ py ∑xi) ≥ α3. 
 

Again, since ∑Xi(1) has a normal distribution, we can transform it to a standard normal and use the 
method described above to find two equivalent constraints that are quadratic or linear functions of the 
decision variables xi and have no probabilistic elements. These constraints are: 
 

[py∑xi - µ] 2 ≤  σ2 [F-1(1-α3)] 2 
 

py∑xi  ≥ µ 

 
where µ = ∑ xi yi Ri

n and σ2 = ∑ xi yi Ri
n (1 - yi Ri

n). 
 

The constraints involving R1 and G4 are a bit more complex. Note that R1, the first year retention rate, 
is equal to the percentage of students who enrolled in their first year who also return for their second year.  
Thus R1 = ∑Xi(2) / ∑Xi(1). A similar function can be written for G4. Thus, these two quantities are 
quotients of random variables. A procedure similar to the one described above can also be used to replace 
these constraints with non-probabilistic functions of the decision variables; however, we do not discuss 
this process here as it is a complex procedure involving bivariate normal distributions.   
 
APPROACHES TO SOLVING THE SOLUTION 
 

In the previous section, we showed that the stochastic program described above can be replaced with 
an equivalent problem in which we wish to maximize a linear function of the decision variables subject to 
constraints that are either linear or quadratic in those decision variables. This type of problem is called a 
nonlinear program, and since it has no probabilistic aspects, is much easier to solve than the original 
problem. There are established methods for solving such a problem in the field of Operations Research 
(Bazarra, Sherali, & Shetty, 1993). 

The solution to this nonlinear program will give us the “optimal” solution to the problem. This 
optimal solution informs the decision-maker how many of each student type to admit (the values of the 
decision variables xi). The solution is “optimal” in the sense that it maximizes expected revenues while 
maintaining acceptable retention and graduation rates and ensuring that any limits on the number of 
students are met with a high degree of probability. 

The same approach can be used to discover optimal solutions for the alternative objective functions 
discussed earlier. The solutions of the nonlinear program in those cases will then be optimal in the sense 
of the objective function specified.  

Once we have such a solution to the model, there are several possibilities for utilizing it. Chances are 
that admissions offices are not going to use the optimal solution to dictate their decisions; however, there 
may be other information that could be used to supplement the decisions made in more traditional ways. 
For example, an admissions office could use the decision to judge how close their practices are to 
optimal.  While this may not mean an overhaul of their system, it may point out areas that could be 
targeted for improvement. 

Although the solution of such a system has not yet been fully implemented, it is conjectured that other 
useful information that such optimal solutions may provide may include certain qualitative properties that 
such solutions exhibit. For example, there may be cases where it is always optimal to admit all students of 
a certain type that apply, which would certainly be information that could prove useful to admissions 
offices. Additionally, such an optimal solution may provide a sort of ordering among the student types, so 
that it is always better to admit a student of one type rather than a student of the other. Still other types of 
information may be obtained from optimal solutions, depending on the real system on which the model is 

Journal of Higher Education Theory and Practice vol. 13(1) 2013     53



 

based. The next step would be to implement such a model for a real system and determine which of these 
types of information is available. 
 
EXTENSIONS OF THE MODEL 
 

The model described assumes that we make an admissions decision once and are done with it, but in 
reality, this same decision is made year after year. In addition, the decision we make in one year may 
affect our decision in a subsequent year. For example, if too many of one student type enroll in one year, 
we may need to curb the number of those students who are admitted the next.  

Furthermore, restrictions on certain student types may be more complex than we stated earlier. For 
example, it may be that in any given year there can be no more than a specified number of students, both 
new and returning, who will live on campus. In addition to the uncertainty created by the fact that an 
admitted student may not enroll, there is uncertainty as to whether students who lived on campus last year 
will enroll and live on campus again this year. Thus, the decisions we made in the last several years affect 
the decision we will make this year. 

This type of problem is a generalization of the stochastic program that was stated earlier. This more 
general problem involves maximizing the expected value of a random quantity based on random 
constraints, such that several decisions are made over many periods and the decisions we make in one 
year may influence our decision in subsequent years. This type of mathematical construct is called a 
stochastic dynamic program. 

Solving a stochastic dynamic program is generally extremely difficult. This is because at each step, 
we need to look into the future and determine what the possible outcomes might be, and then ensure that 
we are doing the best we can do today, no matter which of those outcomes occurs. For more information 
on stochastic dynamic programming (Ross, 1983).   

In this dynamic problem, or multi-stage problem as it is sometimes called, we may still replace the 
probabilistic constraints with non-probabilistic ones as discussed earlier; however, there is no way to 
totally remove the probabilistic component from the dynamic model. This is because of the constraint that 
states that we cannot admit more students of a given type than we have applications from students of that 
type. While we know this year how many applications we received this year, we do not know how many 
we will receive in future years, and we need this information to make our decision today. Thus, the 
number of applications in future years introduces a random aspect that cannot be removed from the 
model. 

One approach to solving this dynamic model with a random application process is to try to describe 
the probability distribution of the application process. If this is successful, we may be able to find the 
optimal solution of such a model. If this approach is not successful, heuristics may be employed to 
approximate the optimal solution. 
 
IMPLICATIONS OF THE MODEL 
 

Eventual goals of the model include the development of a tool that allows enrollment managers to 
calculate admissions levels for each student type that will best accomplish institutional goals. The tool 
would also allow users to evaluate how close current admissions policies come to those optimal levels 
and to identify areas for improvement. Additionally, such a tool would inform admissions personnel of 
any qualitative properties of optimal solutions that might assist in their admissions decisions. The tool 
would also have the capability to allow the enrollment manager to perform “what if” analyses that are 
able to quickly predict how a change in policy or recruitment will affect revenues, institutional quality 
and yield, retention and graduation rates. 
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