Incorporating Practical Computing Skills Into a Supplemental CS2 Problem
Solving Course

Margaret Ellis
Virginia Tech

Stephen H. Edwards
Virginia Tech

Clifford A. Shaffer
Virginia Tech

Catherine T. Amelink
Virginia Tech

Computer scientists are often expected to obtain practical technical skills on their own. We have updated
our supplemental CS2 problem-solving course to introduce students to technical skills across a variety of
computer science topics in order to expand their incidental skills that often fall through the cracks. The
goal of the course is for students to feel comfortable taking their problem-solving skills to unfamiliar
computing situations. This course helps bridge the gap for students with less computing experience by
introducing them to current computer science tools and demystifying potentially intimidating topics such as
version control, security, command line tools, web development, and machine learning. This experience
report details our motivation and approaches for this contemporary problem-solving course. We discuss
outcomes regarding student perceptions of the course, and our innovative approach of measuring student
comfort in situations that require solving problems with computer science such as undergraduate research,
hackathons, and personal programming projects.

Keywords: problem-solving, skills, diversity, co-curricular, CS2
INTRODUCTION

Upper-level CS courses, internships, and research often require students to employ practical technical
skills. At our institution students may not be taught these topics in their courses and they are often expected
to learn such skills on their own. Students with less pre-college or extracurricular computing experiences
may have fewer of these practical skills and less experience learning on their own. Such students may be at
an academic disadvantage or feel intimidated (Amelink et al., 2018; Alvarado et al., 2018). Realizing this
gap motivated us to revise a key introductory course in our curriculum. CS2104 Problem Solving in
Computer Science teaches students problem-solving skills in conjunction with an introduction to various

150 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

practical computer science topics such as using version control, developing websites, navigating networks,
and interacting with databases. The intention of the revision is to:

1. provide practical technical skills needed in a variety of computer science settings,

2. improve problem-solving skills by providing practice within meaningful context, and

3. increase student comfort in situations that require solving problems with computerscience

In this experience report we detail how our teaching experiences and related research motivated our
course evolution. We consider problem solving, student experience, and technical skills with an emphasis
on the relationship between practical skill acquisition and participation in computing activities outside of
students’ coursework. The course modules give students a sampling of computer science topics with
common problem-solving heuristics connecting them. Our instructional strategies involve a hybrid of
teacher-directed and active learning approaches. Our intention is that this intervention will improve
students’ problem-solving skills, give them an opportunity to acquire contemporary technical skills early
in their education, and prepare them to apply these skills in future courses and beyond the classroom.

To help us determine students’ perceptions of the course, their learning of technical and problem-
solving skills, and their comfort in applying these skills outside of their coursework, we administered pre
and post surveys with multiple choice, Likert scale, and open-ended questions. In our open-ended student
responses, many students mention a positive impact on their CS experience including acquisition of new
problem-solving and technical skills. Overall, students find the course useful and interesting and report
becoming more comfortable participating in computing activities that they encounter outside of the course.

BACKGROUND

Computer science educators have long been interested in improving students’ problem-solving skills
(Hasni & Lodi, 2011; McCartney et al., 2007). There is recent interest in providing scaffolding to improve
students” metacognition and self-awareness around problem-solving steps and strategies in computer
science (Loksa et al., 2016; Loksa & Ko, 2016; Prather et al., 2019). For more than a decade our CS
Department has been teaching a first-year experience course intended to help build students’ problem-
solving and metacognitive skills. From senior exit interviews our department found some students did not
feel the course was useful or relevant and that it overlapped with various other courses they had. When
students find course material useful and interesting it improves their motivation (Jones et al., 2016). Earlier
iterations of the course emphasized problem-solving heuristics in the context of classic, but more abstract,
logic puzzles and math problems. We redesigned our problem-solving course to emphasize the application
of the problem-solving heuristics shown in Figure 1 across contemporary topics using practical skills. While
Loksa et al. use an explicit strategy of coaching students through six problem-solving strategies for
programming problems, we recommend similar strategies to our students, but more broadly and across
various types of problems encountered in Computer Science (Loksa & Ko, 2016; Prather et al., 2019). Our
goal is to improve problem-solving skills by applying them in the meaningful context of solving technical
problems in general, not just in programming.

We are interested in promoting a welcoming culture in our department. Previously in 2016, in focus
groups with students about the factors impacting career interest in computer science, some of our students
reported perceptions that could negatively impact their experience in our program. Students reported feeling
intimidated, needing to teach themselves material required for courses, and that there was distance between
students who had computing as a hobby and those who did not (Amelink et al., 2018). Students identified
tinkering and previous experience as an important part of feeling successful in computer science. We are
motivated to build students’ confidence and help them persist in the field. We are inspired by previous work
demonstrating that students’ sense of CS identity, belonging, and self-efficacy is correlated with success,
and that tinkering and skill-building can improve these feelings (Lewis, 2017; Lewis et al., 201 1; Rittmayer
& Beier, 2009; Roick & Ringeisen, 2017). We consider students’ comfort in a situation to be an
amalgamation of feelings and former experiences. Our institution and others offer various courses that
emphasize the use of practical skills such as an elective capstone and software engineering courses,
undergraduate research programs, and course credit for participation in the programming competition team

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 151

(Davis & Rebelsky, 2019; Iberman, 2017; Koppelman et al., 2011; Linhoff & Settle, 2009; Mohan et al.,
2012). This course is designed to help prepare students for such courses and similar co-curricular activities.
We aim to provide early course experiences that help students feel comfortable in the field of computer
science.

FIGURE 1
LIST OF COMMON PROBLEM-SOLVING HEURISTICS REFERENCED IN PROBLEM
SOLVING IN COMPUTER SCIENCE COURSE

Problem Solving Heuristics

* solve a concrete example * solve a simpler problem
* rewrite in symbols * look for a special case
* divide and conquer * look for a pattern

* enumerate possibilities read interactively

* diagram/externalize ideas identify the possible moves

Some students have more technical experience, especially with mechanical tools of the trade.
Undergraduates often encounter topics such as version control, web development, regular expressions, or
databases for the first time during an internship or as an incidental requirement in one class. In the first
semester of the new version of our course we witnessed student enthusiasm for using Chrome Developer
tools (Google, 2019). The context was jeopardy-style Capture-the-Flag (CTF) which is a cybersecurity
competition where students find hidden flags online, or in provided files, for varying point values in
categories such as reconnaissance, web, cryptography, and networking. Later we discovered that a group of
students, predominantly females, subsequently traveled to another university to compete in their first co-
curricular CTF. We also cooperated with the student GitHub organization, who held workshops in
conjunction with our class. Two students asked to make a class announcement about a Web Development
club meeting they intentionally scheduled to be in sync with the course. At this point it was clear that there
was cross-pollination between this course and student co-curriculars. We began wondering more
specifically about student co-curricular activities and the potential relationship with this course, so we began
collecting data related to co-curriculars. As shown in Figure 2, 74% of these students had participated in
some form of external computing, but this leaves a notable subset of 26% who have not. In our small
sample, females and students from underrepresented racial and ethnic minorities such as Black/African
American and Hispanics had less participation in, and more apprehension about, participating in certain
external computing experiences. Previous work has demonstrated the benefits of co-curriculars and there
is evidence that students who participate in them are higher achieving (Frieze & Blum, 2002; Gersting &
Young, 1998; Iberman, 2011; Mandernach, 2016; Nandi & Mandernach, 2016; Thompson, 2006). We
would like to bring these benefits into our course to provide more access to all students. This reinforces our
desire to provide practical technical skills needed in a variety of computer science settings early within the
curriculum.

152 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

FIGURE 2
STUDENT RATE OF PARTICIPATION IN EXTERNAL COMPUTING ACTIVITIES IN
PRE-SURVEY 2019

Students reporting no participation in computing
outside of coursework

Participants:
116
50%
46%

45%

ANO/ 3%

0% 29%

26% 25%
25%
19%

15%

10%

MINORITY (13) TRANSFER (FEMALE (17) ALL(116) MALE (96) TOOK HS
PROGRAMMING
COURSE DESIGN

As shown in Table 1, we redesigned our Problem Solving course. It was formerly puzzle-based. The
redesign had more emphasis on topics in Computer Science, and hands-on use of technologies. Each
semester three sections of this course are offered with total enrollment varying between 115 to 255, with
this number expected to rise. This course has CS1 as a prerequisite so we expect students to have some
programming experience. We chose to use python in this course, as it is easy-to-use across many topics. It
is a bonus that this allows us to introduce a language that is otherwise not a standard part of our lower-
division curriculum.

Our experience working with undergraduate research students helped inform our decisions about
technologies and approaches for this course. Mentoring undergraduate research students as they learned
python, git, and SQL helped reinforce the need for these topics in our curriculum and provided an
opportunity to try various tutorials, IDEs, and instructional approaches. In the summer of 2018, we hired
two Undergraduate Teaching Assistants to specifically help with course development. These UTAs vetted
tutorials, tools, and activities, and provided valuable feedback and insight. Working with students as TAs,
in research, and in other co-curricular settings, further informs our desire to provide hands-on collaborative
learning experiences in the classroom. We strive to create a supportive classroom environment where
students can learn from each other and tinker together to get exposed to new technologies, tools, and tricks
of the trade as is often the case in co-curriculars (Frieze & Blum, 2002; Thompson, 2006).

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 153

TABLE 1

COMPUTER SCIENCE TOPIC MODULES

MODULES Problem Algorithms Software Networking Databases
Solving Engineering and Web and Machine
Introduction Process Development Learning
TUTORIALS Runestone Codecademy (bash, git, HTML, CSS) SQL Bolt
Python
TOOLS PyDev hand trace, bash, git, Wireshark, SQL,
leetcode balsamiq HTML/CSS, sklearn
Google Cloud
Platform
RESOURCES Virginia Cyber Range, CS Field Guide, You Tube

Topic Selection
When considering which topics to add to the course, we thought about:
1. skills that are useful during internships, undergraduate research, and upper-level courses
2. topics meaningful to students relative to career aspirations and personal use of technology, and
3. areas of computing that students likely find attractive from mainstream media.

Familiarity with regular expressions, SQL, web development, and network fundamentals are useful in
industry and undergraduate projects and so were key skills we wanted to include. Students are interested in
algorithms, software engineering practices, and interface design because they perceive them as potential
career paths. Students are excited to build a website because they use them so regularly and they can easily
share their creation with family and friends. Students are motivated to learn about popular topics from
media attention, such as cybersecurity and machine learning. When students recognize the usefulness of
course material it provides a natural motivating framework for learning and practicing problem-solving
skills (Jones et al., 2016). Students are mature enough with a CS1 background to get exposure to the many
areas of computer science before they have the opportunity and background to take upper-level courses
dedicated to a specific topic.

The topics and approach in this course could be adopted in a variety of course settings. A subset of the
topics could be introduced in a first-year experience course, as part of a traditional programming course, or
in a supplemental course designed to introduce students to python. The material in most of the modules can
be adapted to not require CS1 as a prerequisite. In the spirit of the motivation for this course, if a module is
used outside of the sequence of this course it is important that an instructor ensure students have prerequisite
skills as needed. Most of these modules also map easily to the first few weeks of an upper-level course on
the corresponding topic.

Modules

As described above we selected topics expected to be perceived as useful and interesting to students.
We sequenced the topics to best address perquisites. Below we provide further details on the technologies
and content for each of these topics.

Problem Solving Introduction Module

In this first module the students learn basic python with the Runestone Python tutorial and we introduce
the problem-solving heuristics shown in Figure 1. We also highlight mindset and metacognitive skills in
order to improve student awareness of their problem-solving approaches. Students have problem-solving
assignments that align with the CS Field Guide chapters on encoding and encryption. In these first weeks,

154 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

students participate in two jeopardy-style Capture-the-Flag in-class competitions. We use the Web and
Reconnaissance style questions which require only a quick introduction to Chrome Developer Tools to view
HTML source and a few tips about finding flags. These CTF exercises are good practice in persistence and
teamwork. Once students have completed the python tutorial they set up and install the PyDev plugin for
eclipse. We chose Eclipse because it is used in our traditional CS2 course and so would reduce the learning
curve for the students (The Eclipse Foundation, 2019; Google, 2019; pydev, 2019, Runestone Interactive,
2019; University of Canterbury Computer Science Education Research Group, 2020).

Algorithms Module

The Algorithms Module is the most traditional portion of the course and is similar to the material used
previously. We review the concept of algorithm and the various ways to represent an algorithm. The
algorithms content that was formerly in pseudocode is now taught with python. During this portion of the
course students have programming homework assignments to practice figuring out list algorithms, learn to
strive for efficiency, and obtain more experience with recursion. For divide and conquer algorithms and
dynamic programming the students learn to hand trace. Many students recognize these problems as
interview preparation and are engaged. We spend one day using LeetCode in small groups to help students
realize online coding challenges are available and that they have the skills to be successful at them. During
the Algorithms Module students are doing Codecademy tutorials on bash and git to prepare for the Software
Engineering Module (Codeacademy, 2019; Free Software Foundation, 2019; LeetCode, 2019).

Software Engineering Process Module

Students extend from programming in the Algorithms Module to software engineering concepts and
using version control for the algorithms they have programmed. During the Software Engineering Module
we address the classic phases of requirements gathering, testing, design, and coding, and touch on agile
development. We discuss the problems involved with project management and strategies for coping with
team programming. Students then learn about the interdisciplinary nature of Human Computer Interaction.
They work in teams using balsamiq to build a prototype for a presented scenario (balsamiq, 2019).

Networking and Web Development Module

After designing interfaces, we take a sharp turn from a high-level to a low-level computing topic,
networking. Students have homework problems to solve in conjunction with reading about networking in
the CS Field guide. They are also expected to watch several videos about networking and the internet. There
1s a natural connection back to the first weeks of the course when we studied encoding and cryptography.
We spend several days in class using the command line for networking and getting introductory exposure to
utilities like traceroute, scripting, and secure shell remote login. Command line use helps bridge the skills
gap for students with no external computing experience as it helps prepare them for using Linux in
subsequent courses. We also spend a day learning about packet sniffing and using Wireshark. As the
students acquire more skills we are able to do additional CTF class activities, which are rich in problem
solving. We then go deeper into the HTTP protocol and sever-client relationships to learn the foundations
of web development. After completing tutorials on HTML and CSS, the students put these pieces into
practice using a set of skeleton files to incrementally learn web development concepts on Google Cloud
Platform (Computer Science Education Research Group at the University of Canterbury, New Zealand,
2019; Google Cloud Platform, 2019; Wireshark, 2019).

Data Science and Machine Learning Module

Students have a basic idea about networking and servers which helps them understand the various
possible configurations for database servers. After lectures on database concepts and working through a
SQL Bolt tutorial, students can write basic SQL statements in python using a local sqlite3 database.
SQLBrowser gives students a usable GUI to help them grasp database concepts. We follow up by working
with data in pandas and matplotlib so students get brief exposure to programming with statistics and graphs.
Next, we incorporate sklearn so students can execute and explore the results of machine learning

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 155

algorithms. To prepare for machine learning content students watch bots videos and they are also assigned
some ethics reflection prompts in response to Cathy O’Neil’s TED Talk (AuthO, 2020; Grey, 2019,
NumFOCUS, 2019; O’Neil, 2017; sklearn, 2019; SQLBolt, 2019).

The common thread across topics is the problem-solving heuristics shown in Figure 1. We introduce
these early on and revisit them with each topic and explicitly point out when we are using a strategy, or
trying several of them, to solve a problem. For example, we point out the use of concrete examples for
solving encoding problems, developing algorithms, and initially using hard-coded values in incremental
web development. Another example is how students are exposed to diagramming when creating a flow
chart for software and systems engineering, designing a user interface, and modeling entity relationships
for database design. They repeatedly see divide and conquer. It is first introduced with binary search and
reappears repeatedly such as with the concepts of parallel computing, network layers, and the distribution
of front end and server-side responsibilities in web development. These applications of problem-solving
strategies across topics in computer science are interesting and engaging for the students.

Instructional Approaches

We incorporate scaffolding to guide students through discovering solutions by working concrete
examples and generalizing to find an algorithm, and we fade prompts throughout the semester. We also
provide many smaller-sized problems to solve, with practice both in and out of class, with and without
partners. Students are commonly assigned videos to watch and tutorials to guide them in self-directed
learning in preparation for course topics. We have announced and unannounced quizzes on such material.
Students feel a sense of urgency to complete work during class but the stakes are relatively low as they
usually earn only participation credit in class.

Experience with, and coaching about, self-directed learning helps prepare students for likely future
situations when they will need to learn an unfamiliar technology (McCartney et al., 2007; McCartney et al.,
2016). Undergraduate Teaching Assistants attend classes and hold office hours. They act as a role models
by building relationships with the students in the hands-on environments. A graduate teaching assistant
helps with grading and also engages with the students in office hours. The instructional team regularly
meets to be well prepared for assignments and to improve clarity and consistency across the course. The
teaching style varies between lecturer-style and facilitator-style so that students gain some teacher-directed
knowledge as a foundation but also experience guided practice with peers in class (Grow, 1991). We
regularly tell the students they are not expected to have previous experience other than CS1 and that there
will be a wide range of backgrounds in the room. We also let them know that they will likely enjoy certain
topics more than others. Many of these approaches intersect with the aforementioned implications for
teaching determined by studying the benefits of co-curriculars in computing (Frieze & Blum, 2002;
Gersting & Young, 1998; Iberman, 2011; Nandi & Mandernach, 2016; Thompson, 2006).

Our day-by-day course schedule and sample activities can be found at
http://people.cs.vt.edu/maellis1/teaching resources/.

RESULTS

Anecdotally, through student assessment, and via targeted survey questions, we have found that we
accomplished our initial goals for the new version of this problem-solving course. We know the students
obtained practical technical skills and that they improved their problem-solving skills. They are motivated
to engage in problem solving when it is hands-on with useful technology. Overall students increased their
comfort in situations that require solving problems with computer science.

In the first two semesters we collected post-survey data from 324 students (220 in Fall 2018 and 104
in Spring 2019) about their perceptions of the course with regard to usefulness, interest, and acquisition of
both problem-solving and technical skills, the averages are shown in Figure 3. In contrast to former
feedback about the previous version of the course, students found the course useful and interesting which
helped with their engagement and motivation. They reported improving their problem-solving skills and
learning new technical skills. As shown in Figure 3, students also reported improved preparedness for

156 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

pursuing future courses and a career in computer science. We would like to follow up with students in their
senior year to learn more about whether they have the impression that the course positively impacted their
subsequent computing experiences. We observed that the response averages from underrepresented
minorities appeared to consistently be slightly higher than the overall class average, and the response
averages from females appeared to consistently be slightly lower than the overall class averages. We would
like to determine if the pattern continues and if so, attempt to understandany causes we could possibly
affect.

Students consistently report that their eyes have been opened to the breadth of computer science and
they have acquired more skills. For example, these responses reflect students’ interest in the course and its
perceived usefulness:

Focuses on connecting different topics throughout the semester which [veally like (they
don’t all feel disconnected and random topics). Not to mention, the topics are all very
interesting and helpful information to learn for future careers/classes.

This class was really useful to me simply because it showed off all the different areas of CS
that I didn’t even knew existed. I feel like this course has given my academic career here
at tech a much more defined direction than my previous goal of “take random classes and
don’t fail.”

FIGURE 3
STUDENT PERCEPTIONS OF PROBLEM SOLVING IN COMPUTER SCIENCE COURSE

CS2104 Student Perceptions
Fall 2018 and Spring 2019

This course is useful to me. 3.90

This course is interesting to me. 4.02

I improved my problem-

solving skills in this 8:83
| improved my technical skills in 3.2
this course. :
This course has prepared me to be .50

more successful in future courses.

This course has prepared me to be

g 3.94
more successful in my career.

Respondents: 343
Scale:

Strongly Disagree(1)-Strongly Agree(5) 3.2 3.4 3.6 3.8 4.0 4.2

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 157

Different students emphasize the benefits of different portions of the course. In each section there seems
to be a few students who wish we would dive deeper into the topics, although we do try to be very clear
that we are introducing concepts that they can study more deeply in the future.

Students provided detailed positive descriptions of the course in response to the prompt “You indicated
that this course has or will influence your computer science activities outside of your coursework, please
explain.”:

I learned a lot of cool stuff in this class, especially regarding git and web development. [
was able to use the google cloud platform project to my advantage during an interview |
had with salesforce.

I know more about computer science as a field because of what I've learned in this class,
and I am able to have more informed discussions about issues in CS

We were pleased to see that even with seemingly more exciting technical content in the
course, students reflected on the problem-solving skills they acquired:

In other cs courses, [faced many situation where [was not sure how to come up with a
solution. Every time I faced that, I take a break, and break the problem into several pieces,
so that the simple case passes, and keep did it until the problem was solved.

I have learned how to tackle problems that are difficult to me. When I am stuck, [feel as
though firom taking this class that I know what steps to take to solve the problem

To evaluate in more detail the extent to which the interventions used in the course helped build
confidence in key areas among students we conducted a pre/post assessment. The assessment included an
online survey that was administered to students. We asked students to rate their apprehension or comfort
level on a four point scale (1=Apprehensive, 2=Somewhat Apprehensive, 3=Somewhat Comfortable,
4=Comfortable) on a variety of activities. The activities included personal programming projects,
programming projects with friends, hackathons, CTFs, and undergraduate research. The pre-survey was
administered during the first week of class and the post-survey was administered during the last week of
class in the Spring 2019 semester. Additional questions on the survey asked demographic data including
race and gender. These questions were used to parse the data to see whether the rate of change in
apprehension was different for underrepresented groups in computer science. We looked at the trends in
female apprehension. In addition, we examined the trends in apprehension among underrepresented
students by grouping students that reported themselves as African Americans/Black, Hispanic, Native
American or Two or More Races. In total 104 students responded to the survey for a 90% response rate.

In order to analyze the change in levels of apprehension, the Apprehensive/Somewhat Apprehensive
responses were combined into one category “Apprehensive” while the Comfortable/Somewhat
Comfortable response items were combined into one category “Comfortable.” The percentage change was
then calculated between responses in the students that reported Apprehensive versus Comfortable on the
pre/post survey, see Figure 4.

Students’ open-ended responses supported the apprehension survey data. Overall students became
more comfortable participating in computing activities beyond the classroom. The technical practice was
immediately useful for some students as described below:

It has shown me how to use python and wireshark and even do some web dev. I plan to

make my own website using some of this knowledge. I also appreciate learning so much
material that [never even knew, now CS is not as intimidating

158 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

Learned python and got experience using libraries that are crazy, and it helped
refamiliarize me with git & git bash. I actually contributed to a GitHub repository because
1 felt somewhat confident. Been a few weeks now and there aren’t any comments bashing
it! :D

I have joined more CS activities like the Web Development Club and AutoDrive [an
autonomous vehicle club] which got me more involved in CS outside of school

The organization was great and the course content was awesome. [loved how we got to
learn about seemingly distant CS topics such as networking, machine learning, web dev,
and more! I now feel confident and ready to pursue any CS related task on my own in my
personal projects

There were some notable differences in the percent change in apprehension among Underrepresented
Minorities (URMs) including Black and Hispanic students. In some cases their apprehension declined over
the course of the semester and at a greater rate than trends seen overall among students, but in some
activities apprehension increased. Likewise, female students showed variation from the overall class trends.
Both of these populations are small (see Figure 2) and we plan to continue collecting data to see if these
variations continue in future semesters and across a larger dataset.

FIGURE 4
STUDENT FEELIGNS OF APPREHENSION ABOUT PARTICIPATION IN CO_CURRICULAR
ACTIVITIES AT THE BEGINNING AND END OF THE SEMESTER

Students reporting feelings of apprehension about
participation in designated co-curriculars

70%

57%

50% 46% 46% 46%
41%
40%
24%
20% 18%
14% 16%
10%
Personal Programming Programming Projects Hackathon CTF UndergraduateResearch
Projects Friends
= Presurvey apprehensive or somewhat apprehensive Postsurvey apprehensive or somewhat apprehensive

We are pleased that students became less apprehensive about the co-curriculars we questioned them
about. We are concerned and curious about why some students became more apprehensive. We plan to
collect more data across multiple semesters to see if there is a consistent pattern, and to also perform a

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 159

qualitative analysis regarding these feelings in order to help us improve our instructional approaches. For
example, the in-class CTF mimicked a co-curricular activity, and students were in groups and graded only
on participation. This situation may be more encouraging to students than the outside individual networking
programming project which possibly increased some students’ apprehension about personal projects.

FUTURE PLANS

Looking ahead we expect to gather larger volumes of data so we can perform a more complete analysis,
particularly with regard to student feelings about and participation in external computing activities. We
expect to ask more open-ended questions to further understand student perceptions. We would like to
determine whether some subsets of students became more apprehensive about some co-curricular activities
and try to understand why and how to adjust our instructional approaches to affect this.

We will also plan to further investigate the relationships between participation in co-curricular activities
and student success, especially across demographics, possibly using a variation of the Center for Evaluation
the Research Pipeline (Center for Evaluating Research Pipeline (CERP) surveys (Computing Research
Association Evaluation, 2020). We are also interested in various distinctions in co-curricular activities such
as those that are competitive vs. noncompetitive. We would like to explore additional approaches for
integrating the benefits of co-curricular activities directly into the curriculum with hopes to reach, attract
and retain a broader population of students.

We are also interested in supplemental CS2 courses in general. We plan to continue to investigate
methods to provide early exposure to current topics (Bressoud & Thomas, 2019). We are also curious about
potential approaches to integrate various cross-cutting areas of computer science such as design, ethics,
security, and data science throughout the curriculum.

CONCLUSION

The course uses a variety of problem-solving strategies and encourages practice, exploration, and
tinkering to increase students’ comfort not only with their technical skills but also with their ability to
acquire new skills. Students can thus approach future coursework, research, and internships with some
introductory experience with version control, security, command line tools, web development, and user-
centered design. The course is significantly composed of classwork activities so that students are highly
engaged and regularly expected to work with their peers. Furthermore, this course could be a gateway for
students to engage in more computing experience outside of their college coursework: hackathons, online
coding challenges, computing clubs, personal projects, or Capture-the-Flag cybersecurity challenges. As
expected, the combination of practical technical and problem-solving skills in a supplemental CS2 course
helped improve students’ overall reported comfort with computing in a variety of settings. Other CS
educators may want to consider this course redesign model to engage and facilitate problem-solving skills
among students. The results of the assessment tied to the project demonstrate that the pedagogical model
can facilitate student confidence as it relates to problem-solving across various student levels.

ACKNOWLEDGEMENT

©2020 American Society for Engineering Education. ASEE Annual Conference Proceedings, June
2020, Virtual Conference

160 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

REFERENCES

Alvarado, C., Umbelino, G., & Minnes, M. (2018). The persistent effect of pre-college computing
experience on college CS course grades. Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. https://doi.org/10.1145/3159450.3159508

Amelink, C., Davis, K., Ryder, B., & Ellis, M. (n.d.). Exploring factors influencing the continued interest
in a Computer Science major. 2018 ASEE Annual Conference & Exposition Proceedings.
https://doi.org/10.18260/1-2--30488

Auth0. (2020, August 1). DB Browser for SQOLite. Retrieved from https://sqlitebrowser.org/

balsamiq. (2019). Retrieved from https://balsamiq.com/learn/

Bressoud, T.C., & Thomas, G. (2019). A novel course in data systems with minimal prerequisites.
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
https://doi.org/10.1145/3287324.3287425

Codecademy. (2019). Retrieved from https://www.codecademy.com/catalog/subject/all

Computing Research Association Evaluation. (2020). Data Buddies. CERP. Retrieved from
https://cra.org/cerp/data-buddies/

Davis, J., & Rebelsky, S.A. (2019). Developing soft and technical skills through multi-semester, remotely
mentored, community-service projects. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. https://doi.org/10.1145/3287324.32875

Free Software Foundation. (2019). GNU Operating System. Retrieved from
https://www.gnu.org/software/bash/

Frieze, C., & Blum, L. (2002). Building an effective computer science student organization. ACM
SIGCSE Bulletin, 34(2), 74-78. https://doi.org/10.1145/543812.543835

Gersting, J.L., & Young, F.H. (1998). Service learning via the computer science club. ACM SIGCSE
Bulletin, 30(4), 25-26. https://doi.org/10.1145/306286.306304

Grow, G. (1991). Teaching learners to be self-directed. Adult Education Quarterly, 41(3), 125-149.

Google Cloud Platform. (2019). Google Cloud Platform. Retrieved from https://cloud.google.com/

Google Inc. (2019). Chrome DevTools Tools for Web Developers Google Developers. Retrieved from
https://developers.google.com/web/tools/chrome-devtools/

Grey, C.G.P. (2019). How Machines *Really* Learn. Retrieved from
https://www.youtube.com/watch?v=wvWpdrfoEv0

Hasni, T.F., & Lodhi, F. (2011). Teaching problem solving effectively. ACM Inroads, 2(3), 58-62.
https://doi.org/10.1145/2003616.2003636

icpc.foundation. (2019). ICPC. Retrieved from https://icpc.baylor.edu/

Iberman, S.J. (2011). The Computer Science Club: Building a student community with projects and
activities that extend beyond the classroom: Faculty poster. J. Comput. Sci. Coll., 26(6), 178—179.

Jones, B.D., Tendhar, C., & Paretti, M.C. (2016). The effects of students’ course perceptions on their
domain identification, motivational beliefs, and goals. Journal of Career Development, 43(5),
383-397. https://doi.org/10.1177/0894845315603821

Koppelman, H., Dijk, B. V., & Hoeven, G.V.D. (2011). Undergraduate research. Proceedings of the 16th
Annual Joint Conference on Innovation and Technology in Computer Science Education - ITiCSE
'[1. https://doi.org/10.1145/1999747.1999828

LeetCode. (2019). Retrieved from https://leetcode.com/explore/

Lewis, C.M. (2017). ACM RETENTION COMMITTEE Twelve tips for creating a culture that supports
all students in computing. ACM Inroads, 8(4), 17-20. https://doi.org/10.1145/3148524

Lewis, C. M., Yasuhara, K., & Anderson, R.E. (2011). Deciding to major in computer science.
Proceedings of the Seventh International Workshop on Computing Education Research - ICER
'[1. https://doi.org/10.1145/2016911.2016915

Linhoff, J., & Settle, A. (2009). Motivating and evaluating game development capstone projects.
Proceedings of the 4th International Conference on Foundations of Digital Games - FDG '09.
https://doi.org/10.1145/1536513.1536541

Journal of Higher Education Theory and Practice Vol. 20(11) 2020 161

Loksa, D., & Ko, A.J. (2016). The Role of Self-Regulation in Programming Problem Solving Process and
Success. Proceedings of the 2016 ACM Conference on International Computing Education
Research. https://doi.org/10.1145/2960310.2960334

Runestone Interactive LLC. (2019). How to Think Like a Computer Scientist: Interactive Edition.
Retrieved from https://runestone.academy/runestone/static/thinkcspy/index.html.

Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., & Burnett, M.M. (2016). Programming,
problem solving, and self-awareness. Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. https://doi.org/10.1145/2858036.2858252

McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K., Thomas, L., & Zander, C. (2016). Why computing
students learn on their own. ACM Transactions on Computing Education, 16(1), 1-18.
https://doi.org/10.1145/2747008

McCartney, R., Eckerdal, A., Mostrom, J.E., Sanders, K., & Zander, C. (2007). Successful students'
strategies for getting unstuck. Proceedings of the 12th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education - ITiCSE '07.
https://doi.org/10.1145/1268784.126883 1

Mohan, S., Chenoweth, S., & Bohner, S. (2012). Towards a better capstone experience. Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education - SIGCSE '12.
https://doi.org/10.1145/2157136.2157173

Nandi, A., & Mandernach, M. (2016). Hackathons as an informal learning platform. Proceedings of
the47th ACM Technical Symposium on Computing Science Education - SIGCSE '16.
https://doi.org/10.1145/2839509.2844590

NumFOCUS. (2019). matplotlib. Retrieved from https://matplotlib.org/

NumFOCUS. (2019). Python Data Analysis Library. Retrieved from https://pandas.pydata.org/

O’Neil, C. (2017). The Era of Blind Faith in Big Data Must End. Ted Talks. Retrieved from
https://www.ted.com/talks/cathy o neil _the era of blind faith in_big data must _end

Prather, J., Pettit, R., Becker, B.A., Denny, P., Loksa, D., Peters, A., ... Masci, K. (2019). First things
first. Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
https://doi.org/10.1145/3287324.3287374

pydev. (2019). Retrieved from https://www.pydev.org/

Rittmayer, A.D., & Beier, M.E. (2008). Overview: Self-efficacy in STEM. SWE-AWE CASEE
Overviews, 1, 12. T

Roick, J., & Ringeisen, T. (2017). Self-efficacy, test anxiety, and academic success: A longitudinal
validation. International Journal of Educational Research, 83, 84-93.

Software Freedom Conservancy. (2019). Git—Distributed is the New Centralized. Retrieved from
https://git-scm.com/

SQLBolt. (2019). Retrieved from https://sqlbolt.com/

The Eclipse Foundation. (2019). ECLIPSE Foundation. Retrieved from
https://www.eclipse.org/downloads/

Thompson, A.A. (2006). Approaches to recruiting and retaining in computer-science based student
organizations. Working Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education - ITiCSE-WGR '06. https://doi.org/10.1145/1189215.1189178

University of Canterbury Computer Science Education Research Group. (2020). Chapters. Chapters -
Computer Science Field Guide. Retrieved from http://cstieldguide.org.nz/en/chapters/index.html

Virginia Cyber Range. (2019). Retrieved from https://virginiacyberrange.org/

Wireshark. (2019). Retrieved from https://www.wireshark.org/

You Tube. (2019). Retrieved from https://www.youtube.com

162 Journal of Higher Education Theory and Practice Vol. 20(11) 2020

