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We empirically examine the effect of Uber’s presence on the demand for medallion taxi trips in
New York City. We estimate the percent change in number of Yellow and Green cab trips given a one
percent change in number of Uber rides — the elasticity - using rainfall as an instrumental variable. City-
wide, Uber rides supplement, rather than replace, Yellow and Green cab rides. For Yellow cabs, this
result is powered by the area of Manhattan below 110" street; however during the morning rush
only, Uber rides replace Yellow cab rides there. These results suggests Uber competition will have
quite different effects in markets depending upon the thickness and vigor of the existing taxi market,
and site-specific commuting patterns.

INTRODUCTION

Uber, the leading smartphone app based ride-hailing company, has been touted for the efficiency
of its service. The benefits to both passengers and drivers have recently been examined by Cohen et
al. (2016), Cramer and Krueger (2016), Hall and Krueger (2016), and Chen et al. (2017). In the
meantime, Uber has experienced temporary bans from major cities such as London, Delhi, India, and
Austin, Texas. Critics have assailed Uber for opaque p assenger safety requirements, increased traffic
congestion, labor practices regarding its “driver-partners,” and its surge pricing policies. Another
critical issue, that has not been well-studied, is Uber’s impact on existing taxi cab services.
Evaluating whether Uber competition is a threat to the traditional taxi industry will inform the
strategies of Uber and cities with disputes.

New York City (NYC) has a large and well established taxi market, appropriate as an
experimental field to conduct research on Uber’s impact. The NYC Taxi & Limousine Commission
(TLC) has regulated the medallion cab service (Yellow cabs) for almost fifty years. Recently, TLC
launched a new medallion cab service, called street hail livery (SHL, or Green cabs).1 In 2015, the
medallion taxi fleet comprised 7,676 Green cabs and 13,587 Yellow cabs (TLC 2016 page 1).

Specifically, we estimate the percent change in Yellow and Green cab trips given a one percent
change in Uber rides - the elasticity - using NYC medallion taxi trip records and Uber pick-up
records from April to September 2014, and January to June 2015. We use rainfall as an instrumental
variable to control for endogenous factors affecting medallion taxi demand in a taxi trip demand
model.
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The Uber-rides elasticity of demand for cab rides for the entire New York City area is about
4.7% for Yellow cab rides and 9.1% for Green cab rides. These GMM estimates have strong
statistical significance and sufficiently small overidentification test statistics.

FIGURE 1

SPATIAL DISTRIBUTION: PROPORTION OF PICK-UPS BY ZIP CODE
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Data: NYC medallion taxi trip records and Uber pick-up records, April to September 2014 and January to June
2015. The unit of observation in the dataset is zipcode-hour-day-month-year.

Unit of observation in the figure. zipcode. The proportion of pick-ups by zip code is calculated by summing the
pickups for each type of service over all hour-day-month-years of a given zip code, and dividing each by the sum
of pick-ups over all hour-day-month-years for all three services in that zip code.

We find that the distribution of rides across the boroughs differs for Yellow cabs, Green cabs,
and Uber cars. Figure 1(a) shows the proportion of Yellow cab rides relative to the sum of all three
types of rides in each zip code, 1(b) the proportion for Green cab rides, and 1(c) for Uber rides.
Yellow cabs predominate in the core Manhattan zone, below West 110™ Street and East 96" Street?,
and at the airports, Green cabs in the Bronx and in patches of Brooklyn and Queens. Uber cars
predominate in some of the outer areas of the Bronx and Queens, and parts of Staten Island. We
therefore disaggregate the data into boroughs and divide Manhattan into the areas above and below
110" Street. The Uber-ride elasticity estimate of demand for Yellow cab rides is statistically
significant only in Manhattan below 110" Street, about 4.1%. Looking at the median daily trip
statistics in Table 1, 91% of City-wide Yellow cab trips and 70% of City-wide Uber trips occurred in
Manhattan below 110™ Street.

TABLE 1
DESCRIPTIVE STATISTICS: NUMBER OF TRIPS BY BOROUGH
Yellow cabs Green Cabs Ubers
Median Std. Total Median Std. Dev Total Median Std. Dev Total
Dev Sum Sum Sum
H ) 3) (G &) (6) (N 8 )
Manhattan )
kS{Jtelm: 110 386,145 44,875 139,228,820 3,578 1,025 1,237,478 28,928 18,213 12,489,445
ree
1h
;’f;gﬁ HOT 5534 1279 1987334 10135 2710  3.609,152 891 1,132 515,003
Bronx 297 117 121,565 3,601 1,144 1,308,222 369 637 254,801
Brooklyn 8,356 3,810 3,513,685 16,440 6,567 6,074,914 6,544 5,327 2,811,660
Queens 15,320 2,148 5,563,737 13,023 4,021 4,703,185 2,408 2,858 1,399,821
Staten 5 4.62 2,064 7 4.94 2,616 15 20 7,992
Island
Airports 8,439 1,169 3,093,857 161 52.1 58,952 828 626 378,678

See data note for Figure 1. Unit of observation in the table: day-area. For each geographic area, the number of rides in
each zipcode in the area and in the 24 hours of a given day are summed to find the number of rides for that day in that
area. The statistics Median and Standard Deviation (Std. dev) for the area are calculated from these rides per day

figures. Summing over the rides per day for the area gives Total Sum.

We also disaggregate the data by time of day and weekday/weekend. In Manhattan below 110™
Street, we estimate a -2.1% Uber-ride elasticity during the morning rush hour between 6 am and
9 am on weekdays, and 3.9% during the weekend. The negative coefficient for the Uber elasticity in
Manhattan below 110" Street during the morning rush hour implies that Uber rides replace, rather
than supplement, medallion taxi trips during the rush in the central business district of Manhattan. In
the boroughs outside Manhattan, we estimate 4.6% Uber elasticity during the morning rush hour, and
9.7% during the weekend, suggesting that Uber rides supplement, rather than replace, medallion taxi
trips during the morning rush outside Manhattan, and on the weekends.
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We observe an opposite pattern in the Uber elasticity of Green cab trip demand. In the outer
boroughs, we find statistically significant Uber-ride elasticities of about 5.3% during the morning
rush hour, and -6.5% during the weekend. This result can be interpreted as, for Green cab
passengers, Uber rides supplement Green cab rides during the morning rush hour, but replace them
during the weekend. However, the overidentification test statistics for Uber-ride elasticity estimates
by different times of day and weekday/weekend are too large to accept them as supporting evidence.

The studies most closely related to our topic, on the supply side of the taxi market, are Farber
(2015) and Brodeur and Nield (2016). They examine the NYC cabdrivers’ labor supply, the well-
known behavioral economics topic established by Camerer et al. (1997), Farber (2008), and
Crawford and Meng (2011). Farber (2015) revisits the issue and shows that the wage elasticity of
NYC cabdrivers’ labor supply is positive, consistent with the prediction of the neoclassical labor supply
model. He finds that when it rains, the number of taxi trips in NYC increases while the total fare
income does not change; and shows that cabdrivers’ heterogeneous preferences may yield negative
wage elasticities. Brodeur and Nield (2016) use a similar research design, and find that the number of
daily Uber rides increases on rainy days, suggesting that Uber drivers respond positively to increases
in demand. The validity of the instrumental variables in the current investigation relies on the
positive effect of precipitation on the number of Uber and medallion taxi rides.

The closely related studies on the demand side of the taxi market are Cohen et al. (2016) and
Buchholz (2016). Cohen et al. (2016) utilize a large-scale dataset of individual Uber trip records for
four U.S. cities: New York, Chicago, Los Angeles, and San Francisco. They use Uber’s surge pricing
algorithms to identify the price elasticity of demand for Uber rides at each price point, and then
calculate the total associated consumer surplus. In the current investigation, we focus on estimating
the elasticity of demand for medallion taxis relative to changes in the quantity of Uber rides.
Buchholz (2016) investigates the consumer surplus of the taxi market in NYC with respect to search
friction and regulated taxi fares with a large dataset of taxi ride characteristics. He shows that if
search costs are removed (as they might be if medallion taxis adopted ride-rider matching technologies
like Uber’s), consumer surplus is doubled by substantially increasing number of daily trips
(matching taxi supply to taxi demand).

Random utility maximization has been a predominant model in the travel demand literature,
since the seminal work by Domencich and McFadden (1975) and McFadden (1974). We use an
aggregate version of the travel demand model, proposed by Peters et al. (2011), to develop a demand
model for the count of taxi rides with a single trip mode (taxi), which allows us to estimate the
elasticity of demand for taxi trips relative to the quantity of Uber rides. A number of papers have
studied the demand for taxi trips using different model specifications: Douglas (1972), De Vany (1975),
Beesley and Glaister (1983), Cairns and Liston-Heyes (1996), Arnott (1996), and Flores-Guri
(2003). These studies analyze the taxi trip market with the fare as the unit price of the trip, and
discuss whether the regulated fare yields the second best in terms of efficiency, given the monopoly
pricing in the market which arises due to the use of medallion licensing as an entry control.

Jackson and Schneider (2011) and Schneider (2010) examine New York City taxi drivers’ moral
hazard which motivates the drivers to engage in risky driving and criminal activities. The unit of
observation in these studies, however, is the individual driver’s legal record, not individual taxi trips.

THE EMPIRICAL FRAMEWORK
Our primary goal is to estimate the elasticity of NYC medallion cab demand with respect to
quantity of Uber rides. In order to consider spatiotemporal variation, we estimate a panel data model

for taxi trip demand

Vi =0 uy+x;f+yi+6,+cy (1)
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where y;, is the number of NYC medallion taxi trips, u; is the number of Uber trips, x; is a vector of
medallion taxi trip attributes, y; and 6, are location and time specific effects respectively; and ¢, is the
location-time specific error term. The unit of location, NYC zip code, is represented by 7, while ¢
represents the time period, hour of day-month-year. To estimate the coefficient of interest, J, we
must control for the endogeneity of the demand for Uber rides and of the medallion taxi trip
attributes which stem from the cab drivers’ labor supply behavior. We also must account for the non-
uniform and nonstationary spatiotemporal variation in the data series of the demand for taxi trips.
For y;, and u;, we take the log of number of taxi trips and the log of number of Uber trips
respectively; therefore the estimate of ¢ is interpreted as the elasticity of demand for taxi trip rides
with respect to the number of Uber rides.

Data

We use NYC medallion taxi trip records and Uber pick-up records from April to September
2014, and January to June 2015. Medallion cabs’ individual trip records are available to the public
from the TLC’s website.” The records have detailed information about individual taxi trips such as
pick-up and drop-off date and time, pick-up and drop-off location in GPS coordinates (latitude and
longitude), trip distance, itemized fares, number of passengers, etc. Uber does not make its trip
records public, so we use data provided by FiveThirtyEight (2015) that have pick-up time and
location only.

TABLE 2
DESCRIPTIVE STATISTICS
# of pick-ups Total fare Total trip distance
Yellow cab Green cab Uber Yellow cab Greencab  Yellow cab Green cab
Q) 2 3) “ ) (0) )
Median 440,246 47,700 40,520 $6,946,085 $703,083 1,378,623 136,663
Std. dev 53,393 14,838 29,783 $859,212 $229.988 8,073,866 45,088
Max 544,519 81,574 136,193 $10,000,912 $1,569,859 60,720,968 244,962
Min 0 0 0 $0 $0 0 0

Total sum 159,481,189 17,166,393 18,804,806 $2,496,244,821 $254,233,258 1,516,589,012 50,496,604

See notes for Table 1.

Descriptive statistics are reported in Table 2 for the daily number of pick-ups, total fares
collected and total trip distances. In the first row we see the median number of daily pick-ups is
about 440,000 for Yellow cabs, 47,000 for Green cabs, and 40,000 for Uber cars (columns 1, 2, and
3). Columns 3 and 4 show the median total taxi fare of daily trips is about 7 million dollars for
Yellow cabs, and 700,000 dollars for Green cabs. The median total distance of daily trips is about 1.4
million miles for Yellow cabs, and 136,000 miles for Green cabs (columns 6 and 7). The total
number of pick-ups over the sample period, in the bottom row, columns 1, 2, and 3, is about 159
million for Yellow cabs, 17 million for Green cabs, and 19 million for Uber cars.

We aggregate the individual trip records of Yellow cabs, Green cabs, and Uber cars separately by
pick-up zip code (location identifier /) and hour-day-month-year (time period identifier 7). We then
match and merge the records for the three taxi trip services, with unit of observation pick-up zip code
and hour-month-year. For Yellow Cabs, Green cabs, and Uber cars from 2014, we assign the 248
unique NYC zip code areas to each individual trip record according to the trip’s pick-up geographic
coordinates, longitude and latitude. The zip code assignment for Uber pick-up is the same for the
2014 records. Instead of the single point pick-up coordinates, the 2015 Uber records have “taxi zone
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identifiers.” We therefore assign zip codes to the 2015 Uber trip records using the zip code area that
overlaps most with the taxi zone. The sample period comprises 364 days and 12 months. The total
number of time points, hour-day-month-year, is 8,736. With 248 zip code areas assigned to each
time point, the total number of observations is 2,166,528.

The rain data that we use for an instrumental variable, produced by the National Centers for
Environmental Prediction (NCEP), have 1121 x 881 four square kilometer boundary grids covering
the entire U.S. territories on the North American continent. The stage IV weather radar measures
three meteorological quantities in each grid, reflectivity, radial velocity, and spectrum-width base.
Hourly precipitation accumulation is then calculated based on the three quantities. We use the
hourly precipitation data for the 189 grids covering New York City in our empirical analysis. The
grid is assigned to the zipcode polygon which encompasses the greatest proportion of the grid.4

Identification

The regression model (1) is a demand model, and therefore controlling for endogeneity due to
unobservable supply factors is crucial to identify the parameters in the model. Along with hourly
precipitation, we use indicator variables for pick-up zip codes as instrumental variables for the
number of Uber trips and the endogenous medallion taxi trip attributes such as trip distance, trip
duration length, and number of passengers.

We argue that rainfall and the pick-up location of taxi trips are valid instruments because
i) taxi trip demand is highly correlated with rainfall; but ii) cab drivers’ labor supply is uncorrelated
with rain because of the compliance rule for any passengers’ trip request. Farber (2015) and Brodeur
and Nield (2016) are the first studies of the effect of rain on NYC taxi cab and Uber drivers’ labor
supply respectively. Farber (2015) finds that taxi demand substantially increases when it rains, but
drivers’ income does not change. This is due to a decrease in the supply of taxi trips because i)
traffic congestion gets worse when it rains; and ii) drivers prefer not to drive in the rain so they tend
to stop their shifts early. Brodeur and Nield (2016) document evidence that Uber drivers positively
respond to increasing demand when it rains. We therefore infer that the magnitude of the Uber
drivers’ response is substantially greater than the medallion cab drivers’.

We argue further that taxi trip supply is uncorrelated with rainfall due to the compliance rule.
The TLC mandates drivers to accept any trip requests, unless the vehicle is occupied and the
passengers do not want to pick-up additional passengers, or the prospective passenger is in
possession of an article that would damage the vehicle or leave a stain or foul smell (TLC 2010
Section 2-50(e)(3)). According to the TLC rulebook (Section 2-50(a)), “a driver shall not seek to
ascertain the destination of a passenger before such passenger is seated in the taxicab.”
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FIGURE 2
SCATTERPLOT: RAINFALL AND TAXI TRIPS (LOG-SCALE)
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Data: NYC medallion taxi trip records and hourly precipitation measurements, April to September 2014 and
January to June 2015. The unit of observation in the dataset and in the figure is zipcode-hour-day-month-year.
The taxi trip speed average is over all the trips in a given zipcode-hour-day-month-year.

We find some support for this argument in our data. Precipitation in a given hour-location is
almost uncorrelated with the average speed of taxi trips occurring in that hour-location. As shown in
Figure 2(a) in log scale, the scatterplot of average taxi trip speed is almost flat with respect to
precipitation. We further find that precipitation is negatively correlated with trip distance (-0.0018),
trip duration (-0.0040), and total fare (-0.0013), and positively correlated with the number of taxi
trips (0.0081), (all in log scale). These signs of the correlation coefficients are suggestive that taxi
trips decrease in length and increase in frequency when it rains; however the magnitudes of the
coefficients are very small, as illustrated in the first column of the scatterplot matrix in Figure 2(b).

Spatiotemporal Distribution

It is well-known that econometric estimation with nonstationary data may cause either
inconsistent estimation of the target parameter due to serial correlation in the error term, or
inefficient standard error estimation due to heteroskedasticity. To control for nonstationarity issues,
we apply the first-differencing transformation by day-month- year for all variables in (1). Prima
facie, the data series of the number of NYC medallion taxi trips and Uber trips are nonstationary
over time, due to factors such as whether a driver’s shift is a day shift or a night shifts and whether it
is rush hour or not. Income targeting on the part of cab drivers, addressed by a number of behavioral
economics papers, could also produce nonstationarity in taxi trips. Farber (2015), in particular,
demonstrates the time variation in NYC medallion cab trips. He shows that day shift cab drivers have
more rigid start times, whereas end times are more rigid for night shift drivers. 4

To illustrate the daily variation in our dataset that may cause nonstationarity, Figure 3(a)
shows time series plots for the number of medallion cab trips and Uber trips by day. Uber trips
have a steady growth trend while the plot for medallion cabs is stable. These different long-run
trends may prevent the estimation of the causal relationship between the number of Uber trips
and the number of medallion cab trips. Unlike the log-scale scatterplot in Figure 3(c), the first
differenced variables in Figure 3(d) show a clear positive linear relationship.
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FIGURE 3
VARIATION OVER TIME AND SCATTERPLOTS FOR NUMBER OF
TAXI AND UBER PICK-UPS
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See data note for Figure 1. Unit of observation in the figure: day. The number of taxi and Uber

pickups (separately) in the 24 hours of each given day in New York City are summed to find the
number of rides for that day.

As we saw in Figure 1, the spatial distribution of rides shows that Yellow cabs, Green cabs,
and Uber cars serve different areas of New York City. Yellow cab pick-ups occur mostly in the
core Manhattan zone and the two airports, whereas Green Cabs and Uber cars have broader pick-up
distributions.®
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EMPIRICAL RESULTS

TABLE 3
ESTIMATES FOR NUMBER OF PICK-UPS WITH LOG-DIFFERENCED VARIABLES
Yellow cabs Green cabs
OLS TSLS GMM OLS TSLS GMM
@9 () 3) @ o) 6)

Uber 0.0242*%*=* 0.0706*** 0.0466** 0.0154%*=* 0.1127*** 0.09 [ 2%**

(Log-differenced) [0.000] (0.017) (0.018) [0.001] (0.027) (0.025)

Trip distance -0.0895%** -0.2494*** -0.2407%** -0.0906*** 0.0543* 0.0212

(Log-differenced) [0.004] (0.053) (0.063) [0.005] (0.029) (0.027)
Trip duration 0.1017*** 0.1044** 0.0674** 0.0461 *** 0.0209 0.0170***

(Log-differenced) [0.002] (0.047) (0.032) [0.001] (0.013) (0.004)
Passengers 0.4463*** 0.5316%** 0.6236%** 0.4603*** 0.4810%** 0.4932%**

(Log-differenced) [0.002] (0.027) (0.045) [0.002] (0.035) (0.043)
Meter fare 0.4514*** 0.5269*** 0.4800*** 0.4841%** 0.3177*** 0.3513%**

(Log-differenced) [0.006] (0.052) (0.096) [0.007] (0.053) (0.063)
Tip -0.0420%** -0.0469%*** 0.0388*** -0.0401%** -0.0359%%** -0.0363%%**

(Log-differenced) [0.001] (0.004) (0.007) [0.001] (0.004) (0.005)

Constant 0.0238*%** -0.0297*** -0.0177** -0.0243*** 0.0065 0.0010

[0.002] (0.006) (0.008) [0.002] (0.007) (0.007)

# of obs 391,181 391,181 391,181 208,385 208,385 208,385

R’ 0.9008 0.8867 0.8787 0.8944 0.8774 0.8837
i Test statistic (df) 375.92 (150) 102.70 (150) 276.89 (126) 74.91 (126)

(p-value) (0.000) (0.999) (0.000) (0.999)

Data: NYC medallion taxi trip records, Uber pick-up records, and hourly precipitation measures, April to September
2014 and January to June 2015. The unit of observation in the dataset is zipcode-hour-day-month-year. These
observations are log-differenced in the table.

Standard errors are reported in parentheses, heteroskedasticity robust standard errors in square brackets. The
symbols *, ** and *** indicate respectively that the estimated coefficient is statistically significant at the 10%, 5%,
and 1% levels. The Two-Stage Least Squares (TSLS) and Generalized Method of Moments (GMM) estimates treat
“# of Uber pickups”, “trip distance”, “trip duration”, and “# of passengers,” as endogenous covariates. The
instrumental variables are precipitation and the indicator variables for trip origin ZIP Code. The row for 2 test,
second from the bottom, reports the overidentification test statistics with degrees of freedom in parentheses. The
associated p-values are reported in the bottom row. Note that all model estimates contains fixed effect indicator
variables for i) month, ii) year, and iii) weekday.

Table 3 reports estimation results of the model (1), with Yellow cab trips in columns 1, 2, and 3,
and Green cab trips in 4, 5, and 6. All variables, excluding indicators, are log-differenced from the
same zip code-hour-day-month-year hour of 24 hours previous. Since all the variables are in log
scale, each coefficient represents the elasticity of the designated cab rides (Yellow or Green) with
respect to the corresponding variable.
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We find a City-wide Uber-ride elasticity of 4.7% for Yellow cab trips with respect to Uber rides,
and 9.1% for Uber-ride elasticity for Green cab trips in the generalized method of moments (GMM)
estimations in columns 3 and 6. These positive and statistically significant coefficients imply that
Uber rides supplement both Yellow and Green cab trips. In particular, a 1% increase in Uber trips
causes a 4.7% increase in Yellow cab trips and a 9.1% increase in Green cab trips. Although the
magnitudes differ, the sign and statistical significance of the GMM estimates are the same as those
from the OLS specification (columns 1 and 4) and the two-stage least squares (TSLS) specification
(columns 2 and 5).

The Uber-ride elasticity of Green cab trips found in Table 3 is twice the size of Yellow cab trips.
This difference results from the large disparity in market share held by Yellow and Green cabs in the
five New York City boroughs. As shown in Table 1 about 91% of daily Yellow cab trips and 70% of
daily Uber trips occurred in Manhattan below 110™ Street, whereas only 7% of Green cab trips
occurred in that area.” The 4.7% Uber-ride elasticity of Yellow cab trips is therefore powered by
rides in Manhattan below 110" Street, and the 9.1% Uber elasticity of Green cab trips is powered by
rides in Brooklyn and Queens, where 63% of Green cab trips occurred.

The GMM estimates are our preferred results, because this specification controls for the
endogeneity of cab drivers’ labor supply and the nonstationarity of taxi rides, providing statistically
consistent Uber elasticity estimates. In addition, the overidentification (overid) test statistics show
that the GMM results do not reject the null hypothesis that the instrumental variables are exogenous.
Although the TSLS estimates are qualitatively similar to the GMM estimates, the TSLS overid test
statistics strongly reject the null hypothesis of exogeneity. We do not believe these statistics
invalidate the instrumental variables. Rather, we suspect that the heteroskedasticity resulting from
the nonstationary data causes the rejection of the overidentifying restriction in TSLS.

Examining our data, we find suggestive evidence of heteroskedasticity in the hourly data series
for number of taxi trips, which is nonstationary, and is successfully controlled for in the Table 3
GMM estimation. The data series for the daily number of taxi trips appears (relatively) stationary in
log-differenced form, but the hourly data series does not. Figure 4 shows daily and hourly variations
in the number of pick-ups before and after log-differencing. Comparing panels 4(a) and 4(b), the log-
differencing appears to make the daily data series stationary, that is, the series randomly fluctuates
around zero. The log-differencing for the hourly data series, however, seems to amplify the morning
and evening rush hours, causing nonstationarity. In 4(c), the log-scale series declines substantially in
the middle of the night. In 4(d) the log-differenced series remains nonstationary, with two peaks, one
in the morning rush hour between 6 am and 9 am, and the other at the evening rush hour between
5 pm and 7 pm.
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FIGURE 4

VARIATION OVER TIME BY DAY AND HOUR: MEDALLION TAXI PICK-UPS
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See data note for Figure 1. The unit of observation in figures a and b is day of month; for a given day of the
month (from 1 to 31) the number of taxi pickups in New York City are summed over the 24 hours of that day over
all month-years. The unit of observation in figures ¢ and d is hour of day; for a given hour in a day (from 1 to 24)
the number of taxi pickups in New York City are summed over that hour in all day-month-years.

The Effect of Uber Trips on Yellow Cab Trips

Table 4, column 1, reproduces the GMM estimate of the Uber-ride elasticity of the demand for
Yellow cab trips for all of New York City from Table 3, column 3, and then reports estimates by
borough and Manhattan below and above 110" Street. The overid test statistics do not reject the
overidentifying restriction, and therefore the instrumental variables are valid for the estimates in

Table 4.
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TABLE 4
GMM ESTIMATES OF YELLOW CAB DEMAND (# OF PICK-UPS)

Entire sample Manhattan Brooklyn  Queens Bronx
All Below 110" Above 110™
Q) 2) 3) “ ) (6) @)

Uber 0.0466** 0.0330 0.0407* 0.2278 0.1082 0.1236 0.0344
(Log-differenced) (0.018) (0.022) (0.021) (0.271) (0.097) (0.096) (0.077)
# of obs 391,181 259,791 228,679 31,112 75,543 46,014 1,785
R 0.8787 0.8889 0.9208 0.6974 0.8758 0.8173 0.7541
¥ Test (df) 102.70(150) 14.75(63) 9.90(51) 0.81(8) 19.74(32) 21.40(30) 8.49(11)
(p-value) (0.9988) (1.0000)  (1.0000) (0.9992) (0.9556) (0.8751) (0.6690)

See notes to Table 3.

We see in column 3 that the 4.7% City-wide Uber-ride elasticity for Yellow cab trips comes
mostly from Manhattan below 110" Street, where the Uber-ride elasticity estimate is 4.1%. The
elasticity estimate for all of Manhattan is about 3.3%, and in Manhattan above 110" Street, 23%,
although neither is statistically significant. Uber trips appear to supplement Yellow cab trips in
Manhattan below 110" Street.

The Uber elasticity estimates outside Manhattan are positive but statistically insignificant. The
elasticity estimates in Brooklyn and Queens have, however, Z-statistics that exceed one. It is thus too
early to conclude that Uber trips have no impact on Yellow cab trip outside of Manhattan below
110™ Street. We are unable to estimate the elasticity in Staten Island due to the insufficient number of
observations.

In Table 5 we report Uber elasticity estimates for weekday rush hours and on the weekend, in
Manhattan below and above 110" Street, and for the other boroughs grouped together. Interestingly,
we have a negative Uber elasticity estimate of -2.1% in Manhattan below 110" Street during the
morning rush hour, statistically significant at the 5% level. Below 110™ Street, the elasticity estimate
for the weekend is about 4%, close to the City-wide elasticity of Yellow cab trips. The negative
morning rush hour elasticity suggests that Uber trips replace Yellow cab trips at that hour. Note,
however that that the overid test statistics for both of these specifications strongly reject the
overidentifying restriction. Thus, these two Yellow cab trip samples need to be re-examined with
more observations. The elasticity estimate for the evening rush is less than 1% but not statistically
significant.
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TABLE 5

GMM ESTIMATES FOR YELLOW CAB TRIPS
BY WEEKDAY RUSH HOUR AND WEEKEND

Manhattan Below 110" st Manhattan Above 110" st Other Boroughs
Morning Evening Weekend Morning Evening Weekend Morning Evening Weekend

(@) @ (€)) “) (€] ©) ) ® (€]

Uber -0.0207%*  0.0041  0.0389*** 00254  0.1278  -0.0488  0.0458*  0.0443  0.0969%**
(0.010)  (0.009)  (0.008)  (0.141) (0.118) (0.086)  (0.024) (0.028)  (0.028)

# of obs 26,714 24604 63,605 4070 3,112 10,115 18352 11,750 43,390

R 09309 08540 09139 07698 0.8252 07647  0.7194  0.8386  0.7587

7 Test(df)  79.73(49) 41.67(51) 233.41(51) 1.81(8) 3.008)  8.79(8) 88.55(70) 74.09(60) 128.71(78)
(p-value) (0.0036) (0.8213)  (0.0000) (0.9863) (0.9346) (0.3607) (0.0665) (0.1043) (0.0003)

See notes to Table 3. Morning (evening) rush hour is between 6 am (5 pm) and 9 am (7 pm) on weekdays

The Effect of Uber on Green Cab Trips

Table 6 reports GMM estimates of the Uber-ride elasticity for Green cab trips during the rush
hours on weekdays, on the weekend in Manhattan above 110™ Street, and in the other boroughs
grouped together. There are no statistically significant Uber-ride elasticity estimates for Green cab
trips at any time in Manhattan above 110™ Street. In the boroughs outside Manhattan, the Uber
elasticity estimate is about 5% during the morning rush hour, and is statistically significant at the
10% level. During the weekend, however, the elasticity estimate is about -6.5% and statistically
significant at the 1% level, in contrast to the positive Uber elasticity for Yellow cab trips in Table 5,
column 9. The negative elasticity suggests that Uber rides replace Green cab trips in the outer
boroughs on the weekend. But this elasticity estimate needs to be re-examined with more
observations because the overid test statistic strongly rejects the overidentifying restriction.

GMM ESTIMATES FOR GREEN CABSTﬁﬁl?I\J:’:E?EKDAY RUSH HOUR AND WEEKEND
Manhattan Above 110" St Other Boroughs
Morning Evening Weekend Morning Evening Weekend
Q) 2) 3) “) ) (0)
Uber -0.0080 0.0107 -0.0704 0.0526* -0.0000 -0.0648%**
(0.106) (0.086) (0.051) (0.031) (0.018) (0.024)
# of obs 4,346 3,472 10,719 20,802 17,655 52,202
R’ 0.8649 0.6257 0.8953 0.8244 0.7760 0.7799
i Test (df) 4.23(8) 0.31(8) 5.65(8) 97.81(75) 91.36(78)  208.95(89)
(p-value) (0.8358) (1.0000) (0.6868) (0.0397) (0.1430) (0.0000)

See notes to Table 5.
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CONCLUSION

We have empirically examined the effect of Uber’s presence on the demand for medallion taxi
trips in New York City. Specifically, we estimate the percent change in Yellow and Green cab trips
given a one percent change in Uber rides — the elasticity - using NYC medallion taxi trip records and
Uber pick-up records from April to September 2014, and January to June 2015. We use rainfall as an
instrumental variable in a taxi trip demand model to control for endogenous factors affecting
medallion taxi demand.

We find that, City-wide, Uber rides supplement, rather than replace, Yellow cab and Green cab
rides. For Yellow cabs, the City-wide positive and significant Uber-ride elasticity of the demand for
Yellow cab trips is powered by the positive and significant Uber-ride elasticity in Manhattan below
110" Street, where 91% (70%) of daily Yellow cab trips (Uber trips) are initiated.

However, results indicate that whether Uber’s presence supplants medallion taxi rides or
increases demand for them depends on location and traffic conditions influenced by time of day and
weekday/ weekend status. Our statistically significant results most often show a positive effect of
Uber rides on taxi demand. However, Uber pick-ups decrease the number of Yellow taxi rides in
Manhattan below 110" Street during the morning rush hour. They also decrease the number of Green
cab rides on the weekend in the outer boroughs grouped together.

We view these two results with caution because in both specifications the overidentifying
restriction is strongly rejected. But they suggest that Uber competition will have quite different
effects in markets depending upon factors such as the thickness and vigor of the existing taxi market
and site-specific commuting patterns. Documenting the market characteristics which make the
presence of Uber a positive or negative force on the demand for traditional taxis is an important area
for future research.

ENDNOTES
1. Green cabs are restricted from picking up passengers in the core Manhattan zone and at the two NYC
airports (TLC 2013). Other than this restriction, TLC regulations are the same for both Yellow and
Green cabs.

2. NYC documents define the core Manhattan zone as Manhattan below West 110" Street and East 96™
Street (TLC 2013). Technically, this zone contain two major business districts, Midtown Manhattan,
the central business district (CBD)), and Lower Manhattan/Wall Street, the financial district. In
practice, observers often use CBD refer to all of Manhattan below 59™ Street as the CBD (e.g., Merrill
and Coote 2015).

3. TLC Raw Data landing page: http.// www.nyc.gov/html/tlc/html/technology/raw_data.shtml
TLC Trip Record Data landing page: http.//www.nyc. gov/html/tic/html/about/trip_record_data.shtml
Dataset webpages:
https://data.cityofnewyork.us/Transportation/2014-Green-Taxi-Trip-Data/2np7-5jsg
https.://data.cityofnewyork.us/Transportation/2015-Green-Taxi-Trip-Data/gi8d-wdg5
https.//data.cityofnewyork.us/Transportation/2014-Yellow-Taxi-Trip-Data/gn7m-em8n
https.://data.cityofnewyork.us/Transportation/2015-Yellow-Taxi-Trip-Data/ba8s-jw6u

4. See Hamidi et al. (2017) for details about the stage IV radar data. Many thanks to Ali Hamidi and
Naresh Devineni of the National Oceanic and Atmospheric Administration/Cooperative Remote
Sensing Science and Technology Center at the City College of the City University of New York for
sharing the data.

5. Farber (2015) finds that there are two peaks in the hourly distribution of shift start times, additional
evidence that the time variation of taxi trips is nonstationary.

6. Recall Green cabs are restricted from picking up passengers in the core Manhattan zone (and at the
two NYC airports TLC (2013). This is the reason that Figure 1(b) shows Green cabs with almost no
pick-ups in those areas.
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7. For each type of service, find the percent of rides in Manhattan below 110" Street by dividing the total
number of rides below 110™ Street (in the top row of columns 3, 6, and 9 of Table 1) by the sum of the
numbers in the “Total” column.
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