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This paper is concerned with the analysis of queuing systems when there are two distinct populations. Its 
pragmatic nature is both intentional and far-reaching. Two significant contributions concern configure-
ations with arrival dependent service rates, one of which examines lane switching objectives. Linear 
algebra and calculus are the primary disciplines used to generate various performance metrics. 
 
INTRODUCTION 
 
     The focus of this research is to examine a class of queuing problems frequently found in real world 
applications; these problems are those in which the customer population can be separated into two distinct 
groups, which will be referred to as type-one and type-two customers. The criterion used to define the two 
groups is immaterial to this study; a requirement of the partitioning, however, is that there is a difference 
in either the arrival rate or service rate or both rates. When there is more than one service facility to 
service the two groups, a manager is confronted with the challenge of choosing the best allocation of 
customer groups to service facilities. Three options are to be explored herein and compared to a base case. 
Standard performance measures are generated for selected scenarios to assess the tradeoffs between the 
various configurations. 
     The inspiration for this study was from a project undertaken over a decade ago for a large steel 
manufacturer. One of its Basic Oxygen Furnaces (BOF) was in the capital funding stages of getting a new 
chemical laboratory. A critical step in the steelmaking process is to test samples of molten steel from 
suspended ladles. Processing cannot continue until the test results are known. The test samples were to be 
sent to the new lab through pneumatic tubes and the testing performed in the order in which the samples 
arrived. Due to its million dollar price tag, current plans included only one lab machine. Back-ups in the 
lab, however, caused delays which were equated to financial losses and too many delays resulted in 
ruined careers. The lead chemist wanted to know the probability that a sample would wait for testing and 
the expected time waiting for service. There were two types of tests performed, each with their respective 
processing times. If a second lab machine was added to the proposal, without solid numbers to justify the 
additional expenditure, it risked being denied. Should a second machine be included in the proposal? 
Should it have a dedicated pneumatic tube? Could the two machines share a tube (queue)? Was there an 
option between the two that offered the same or better service? An answer was needed in two weeks. The 
company paid an analyst to crunch numbers for two weeks providing the best answer in the given time 
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frame. The model used in this study would have been able to answer all the questions from the lead 
chemist in a manner of minutes. 
     Any establishment that creates queues should view the performance tables in the cited works as a 
source for competitive advantage. Managers will be able to cut analyst costs, decrease lead time, and may 
also achieve a higher level of customer satisfaction by reducing the time customers wait for service. 
These tables give practitioners the necessary tools to predict expected performance metrics as well as to 
gain insights from various queuing configurations. 
 
MODEL DESCRIPTION 
 
     The following four queuing systems (A through D) will examine the dynamics of queues that service 
two distinct populations each with their own set of independent parameters. The interarrival and service 
times are both exponentially distributed with res All arrivals are equal in 
status; there are no priority rules in practice. By design, the arrival rate is less than the service rate to 
ensure stability; this restriction satisfies the condition 
 = < 1. 
 
(A) Base Case 
     This configuration considers the case of using only one service facility for both populations. It is a 
classic example that appears in most texts on queuing theory. It describes the current proposal for the 
BOF chemical lab: two sample types (populations), one lab machine, and exponentially distributed 
service times. Since the two populations are merged into one, their combined service distribution becomes 
a hyper-exponential distribution. Using Kendall's notation, the system is a M/G/1 system for which closed 
form equations are available; these equations are not included since they are well-known. 
 
(B) Shared Queues 
     This configuration considers the case of using two service facilities with one shared queue for the two 
populations. The service facilities operate in parallel and each is capable of serving either type of 
customer. Customers enter the queue when both facilities are occupied and the next customer in line will 
be serviced by the next available server. A classic example of this configuration is a post office with two 
clerks and one common line. The first customer in line is serviced by the next available clerk; customers 
choose equally between clerks when both are available. 
     State probabilities for this configuration are defined by pnij where n denotes the number of units in the 
system, i denotes the type of customer in facility one, and j the type of customer in facility two; valid 
values for the last two subscripts are: zero, one, and two. Closed form equations for this configuration do 
not exist. Matrix algebra is used therefore to find the state probabilities which are essential to developing 
the performance metrics. This process requires a finite queue capacity thereby trading accuracy for the 
sake of a solution. A tolerance parameter is set to 0.001 and equals the probability that the system is full; 
the system capacity is now a function of the selected tolerance. 
     A brief overview of the process may be found in the Appendix. 
 
(C) Dedicated Queues 
     This configuration considers the case of using two dedicated queues; one for each population with no 
sharing of service facilities. An example of this configuration is an airline with separate check-in lines for 
clients flying first-class and coach. Agents working the first-class counter are reserved for first class 
customers only. If no one is in line, they are not allowed to service customers from coach since it may 
delay service to a first-class customer. Performance metrics for each channel are generated the same as 
for a standard M/M/1 queue. An overall system metric is calculated as the weighted average of the two 
independent queues. 

74     Journal of Management Policy and Practice vol. 12(4) 2011



(D) Mixed Queue, Arrival Dependent Service Times 
     A mixed queue is defined in this study as a queue in which arrivals from an originating queue switch 
to another queue and are merged or mixed with arrivals from the destination queue. An example of this 
configuration is a small grocery store with an express line for customers with less than ten items and 
another line for any customer. Customers with one item take the same amount of time to service 
regardless of the register they use. This change converts the service time distribution for the general lane 
from an exponential to a hyper-exponential distribution. It should be noted that in this study the service 
rate for type-one arrivals may be greater than, less than, or equal to the service rate for type-two arrivals. 
Type-one arrivals are allowed to switch queues with the objective of equalizing the workload between the 
two servers. For reference purposes, the first channel will be referred to as the specialized queue and the 
second as the general queue. 
     The challenge to calculating performance metrics for lane switching models is to quantify the 
frequency at which customers switch lanes. An obvious circumstance under which customers switch lanes 
is when a type-one arrival moves to a general lane after observing their facility is occupied and the 
general facility is available. This event, however, is not the only circumstance under which a type-one 
arrival will switch to a general lane. One strategy arrivals may use is to balance the workload between the 
two facilities; in this manner, an arrival makes an assessment based on the percentage of time the general 
lane is busy. The performance metric that incorporates both the arrival and service rates is the utilization 
factor, ; the effective workloads of each facility are equalized by transferring the unbalanced workload 
from the specialized queue to the general queue. A key assumption of this methodology is that customers 
are able to make good decisions when they have the option to balance the workload between two service 
facilities. 
 
RESULTS 
 
     Consider the dilemma posed by the lead chemist in the introduction. Suppose the combined workload ( 1 +  2 = 0.7); in other words, the current 
system is moderately busy. Table 1 lists various combinations of arrival and service rates that produce the 
desired workload. Subscripts one and two refer to type-one and type-two samples respectively. Arrival 
and service rates without subscripts are the average for the two types; ratio ref 1 2. Suppose that 
the ratio of the two workloads is 3:2; in other words, type-one samples generate more of a workload than 
type-two samples. The service time for type-one samples is used as a base. For example, let the service 
time for type-one samples equal one minute. The service time for type-two samples then is 1.5 minutes 
since = 1 = 12 3 = 1.5 

 
where  2 is the service rate for a type-two customer. Using this 
combination, server one therefore is faster than server two. 
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TABLE 1 
INPUT PARAMETERS FOR  

 

1 1 1 2 2 2   
% 

type1 
% 

type2 ratio 

0.350 1.000 0.350 0.700 2.000 0.350 1.050 1.500 33% 67%  1:1 
0.467 1.000 0.467 0.233 1.000 0.233 0.700 1.000 67% 33%  2:1 
0.525 1.000 0.525 0.117 0.667 0.175 0.642 0.917 82% 18%  3:1 
0.560 1.000 0.560 0.070 0.500 0.140 0.630 0.900 89% 11%  4:1 
0.233 1.000 0.233 0.933 2.000 0.467 1.167 1.667 20% 80%  1:2 
0.350 1.000 0.350 0.350 1.000 0.350 0.700 1.000 50% 50%  2:2 
0.420 1.000 0.420 0.187 0.667 0.280 0.607 0.867 69% 31%  3:2 
0.467 1.000 0.467 0.117 0.500 0.233 0.583 0.833 80% 20%  4:2 
0.175 1.000 0.175 1.050 2.000 0.525 1.225 1.750 14% 86%  1:3 
0.280 1.000 0.280 0.420 1.000 0.420 0.700 1.000 40% 60%  2:3 
0.350 1.000 0.350 0.233 0.667 0.350 0.583 0.833 60% 40%  3:3 
0.400 1.000 0.400 0.150 0.500 0.300 0.550 0.786 73% 27%  4:3 
0.140 1.000 0.140 1.120 2.000 0.560 1.260 1.800 11% 89%  1:4 
0.233 1.000 0.233 0.467 1.000 0.467 0.700 1.000 33% 67%  2:4 
0.300 1.000 0.300 0.267 0.667 0.400 0.567 0.810 53% 47%  3:4 
0.350 1.000 0.350 0.175 0.500 0.350 0.525 0.750 67% 33%  4:4 

 
     Table 2 shows the expected queue length for each of the cases previously described. The lead chemist 
should expect on average 1.7 samples waiting for service at any given time with only one service facility. 
Performance improvements for each two-server configuration are found in their respective columns and, 
not surprisingly, the shared configuration has the smallest expected queue length of 0.227. Another factor 
not previously mentioned in the introduction is that the lab technicians are union employees; each 
technician has a job description that specified the tests they are allowed to perform. With this constraint, 
dedicated service facilities are required and the expected queue length is 0.413 samples. The mixed 
configuration's performance is between that of the prior two configurations but it allows for some 
specialization of technicians which may be an acceptable option to the union representatives. 
     Another factor of interest to the lead chemist is the expected time a sample would spend in the queue. 
These results are given in Table 3. It should be noted that the units for the time are dependent on the units 
from the input parameters and that queue time is a function of the arrival rate. Using the example from 
Table 1, with the base case, samples are expected to wait 2.8 minutes. An extra machine using the worst 
configuration (dedicated servers) reduces the expected wait time by a factor of four. 
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TABLE 2 
QUEUE LENGTH COMPARISON FOR TWO POPULATIONS WITH  = 0.7 

(A) 
Base 
Case 

(B) 
Two Servers, 

Dedicated 

(C) 
Two 

Servers, 
Shared  

(D)  
Two Servers,  

Mixed  

ratio Lq Lq Lq1 Lq2 Lq Lqe Lq1e Lq2e 

 1:1 1.838 0.377 0.188 0.188 0.234 0.377 0.188 0.188 
 2:1 1.633 0.479 0.408 0.071 0.222 0.377 0.188 0.188 
 3:1 1.684 0.617 0.580 0.037 0.226 0.385 0.188 0.196 
 4:1 1.764 0.736 0.713 0.023 0.231 0.400 0.188 0.211 
 1:2 1.815 0.479 0.071 0.408 0.232 0.479 0.071 0.408 
 2:2 1.633 0.377 0.188 0.188 0.222 0.377 0.188 0.188 
 3:2 1.699 0.413 0.304 0.109 0.227 0.382 0.188 0.193 
 4:2 1.815 0.479 0.408 0.071 0.236 0.398 0.188 0.209 
 1:3 1.786 0.617 0.037 0.580 0.230 0.617 0.037 0.580 
 2:3 1.633 0.413 0.109 0.304 0.222 0.413 0.109 0.304 
 3:3 1.701 0.377 0.188 0.188 0.227 0.377 0.188 0.188 
 4:3 1.833 0.395 0.267 0.129 0.238 0.388 0.188 0.200 
 1:4 1.764 0.736 0.023 0.713 0.229 0.736 0.023 0.713 
 2:4 1.633 0.479 0.071 0.408 0.222 0.479 0.071 0.408 
 3:4 1.700 0.395 0.129 0.267 0.227 0.395 0.129 0.267 
 4:4 1.838 0.377 0.188 0.188 0.238 0.377 0.188 0.188 

 
TABLE 3 

COMPARISON OF TIME IN THE QUEUE FOR TWO PO  

(A) 
Base 
Case 

(B) 
Two Servers, 

Dedicated 

(C) 
Two 

Servers, 
Shared  

(D) 
Two Servers,  

Mixed  

ratio wq wq wq1 wq2 wq wqe wq1 wq2 

 1:1 1.750 0.359 0.538 0.269 0.223 0.359 0.538 0.269 
 2:1 2.333 0.685 0.875 0.304 0.317 0.538 0.538 0.538 
 3:1 2.625 0.962 1.105 0.318 0.352 0.600 0.538 0.673 
 4:1 2.800 1.167 1.273 0.326 0.367 0.634 0.538 0.754 
 1:2 1.556 0.411 0.304 0.438 0.199 0.411 0.304 0.438 
 2:2 2.333 0.538 0.538 0.538 0.317 0.538 0.538 0.538 
 3:2 2.800 0.681 0.724 0.583 0.374 0.630 0.538 0.754 
 4:2 3.111 0.822 0.875 0.609 0.405 0.682 0.538 0.897 
 1:3 1.458 0.504 0.212 0.553 0.188 0.504 0.212 0.553 
 2:3 2.333 0.590 0.389 0.724 0.317 0.590 0.389 0.724 
 3:3 2.917 0.646 0.538 0.808 0.389 0.646 0.538 0.808 
 4:3 3.333 0.719 0.667 0.857 0.432 0.706 0.538 1.000 
 1:4 1.400 0.584 0.163 0.636 0.182 0.584 0.163 0.636 
 2:4 2.333 0.685 0.304 0.875 0.317 0.685 0.304 0.875 
 3:4 3.000 0.697 0.429 1.000 0.400 0.697 0.429 1.000 
 4:4 3.500 0.718 0.538 1.077 0.454 0.718 0.538 1.077 
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CONCLUSION AND REMARKS 
 
     The lead chemist may use the results obtained from the tables to compare the purchase price for an 
additional machine to the respective delay costs. The table values are not surprising but confirms 
intuition; a shared configuration with two machines performs best. The quandary, however, is typically 
over the magnitude of improvement; just how much better is one configuration over the other? Real world 
applications do not always lend themselves to implementing the best configuration. Customer 
perceptions, budget constraints, union rules, and many other factors overrule what would seem to be a 
cogent argument. The methodology used herein allows for these realities to be quantified in terms of their 
tradeoffs. 
 
REFERENCES 
 
Plumchitchom, N. (2006). The Queuing Theory of the Erlang Distributed Interrival and Service Time. 
Chicago, IL: Illinois Institute of Technology. 
 
Thomopoulos, N. T. (1990). Strategic Inventory Management and Planning. Carol Stream, IL: Hitchcock 
Publishing Company. 
 
Wilder, C. R. (2010). The Queuing Theory of Two Populations with Lane Switching. Chicago, IL: Illinois 
Institute of Technology. 
 
APPENDIX 
 
An example is given for a system capacity (k) of three; this value was chosen in order to produce a matrix 
that could be printed on one page. The same process may be used with tighter tolerance values with 
minimal effort. 

1. Four matrices are constructed using equilibrium equations to form the relation: =  
where A, P, and B are matrices and P000 is a scalar. The equilibrium equations for the case where 
the system capacity =  k = 3 is given in Figure 1. 

 
FIGURE 1 

EQUILIBRIUM EQUATIONS 
 + + + =( + ) + + = 0.5( + ) + + = 0.5( + ) + + = 0.5( + ) + + = 0.5( + 2 ) + ( + ) + (2 + + ) = 0( + + ) + + + ( + ) + ( + ) = 0( + + ) + + + ( + ) + ( + ) = 0( + 2 ) + ( + ) + ( + + 2 ) = 0(2 ) + = 0( + ) + = 0( + ) + = 0(2 ) + = 0

 

 
The resulting matrices, A,P, B, and Q are shown in the following figures. 
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FIGURE 2 
MATRIX A 

 0 0 0 0 0 0 0 0( + ) 0 0 0 0 0 0 0 0 00 ( + ) 0 0 0 0 0 0 0 00 0 ( + ) 0 0 0 0 0 0 00 0 0 ( + ) 0 0 0 0 0 00 0 ( + 2 ) 0 0 0 2 00 0 0 ( + + ) 0 0 + 00 0 0 0 ( + + ) 0 0 +0 0 0 0 0 ( + 2 ) 0 20 0 0 0 0 0 0 (2 ) 0 0 00 0 0 0 0 0 0 0 ( + ) 0 00 0 0 0 0 0 0 0 0 ( + ) 0
 

 
FIGURE 3 

MATRICES P, B, Q 
 

=            =
0.50.50.50.50000000

       =  

 
2. Matrix operations are performed as depicted below. 

 =  
let =  
then =  
 
for which the expanded version follows in Figure 4. 
 

FIGURE 4 
EXPANDED MATRICES 

 

=  
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3. Values for the state probabilities may now be written as: =  =  
      ............. =  
 

4. Using the unity condition = 1 = + + … . +  

 and substitution, a value can be found for p000 as follows: 
 + + … . + = 1 (1 + + … . + ) = 1 = 1(1 + + … . + ) 

 
5. The probability there are k units in the system is = , + , + , + , . If Pk is 

larger than the tolerance, a larger k is chosen and the previous steps are repeated; once Pk is 
within the selected tolerance the algorithm stops. 
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