Unemployed Versus "Not in the Labor Force": Is There a Difference?

Bruce H. Dunson Metrica, Inc.

Brice M. Stone Metrica, Inc.

This paper uses economic measures of behavior to examine the validity of the line drawn between individuals inside and outside the labor force, particularly between the unemployed and those outside the labor force. If labor force states are indistinguishable, the unemployment rate is open to interpretation. Our findings suggest that labor force statuses are distinct for mature adults and less distinct for teenagers. However, among mature adults, the degree of distinctiveness varies by race and ethnicity. Since 1990, there has been increased instability between the labor force statuses of the unemployed and those outside the labor force in some groups.

INTRODUCTION

Although numerous studies have presented evidence that labor force dropouts constitute an increasing proportion of the population (Juhn, Murphy, & Topel, 1991, 2002; Murphy & Topel, 1997), other studies have suggested that jobseekers' increased use of computer databases and electronic bulletin boards has not been incorporated into the inside-the-labor-force statistics. Hence, a proportion of individuals who are counted as outside the workforce are, in fact, inside it and unemployed (Autor, 2001). Although Kuhn and Skuterud (2000) and Kroft and Pope (2014) questioned the significance of the Internet in determining unemployment rates, the increase in online networking and other forms of passive job-search behavior may make the correct classification of people into labor force statuses more complex and difficult.

This paper further examines the validity of the line drawn between people inside and outside the labor force, particularly between the unemployed and those defined as outside the labor force. The importance of this question is well documented. If the conventionally defined labor force statuses are, in fact, not distinct, our understanding of what unemployment is and how to address it becomes more complicated. For example, as illustrated by Juhn et al. (2002), a decreasing unemployment rate may be consistent with a worsening job market if individuals exit rather than remain in the labor force. Previous studies that have modeled the behavioral distinction between being inside and being outside the labor force have inferred behavior based on transition rates between these transition categories and the outcome of the process, as measured by earnings and measures of labor supply. Our questions are as follows: 1) Can economic measures of behavior capture the distinction between being inside and being outside the labor force that is identified in the transition rates? For example, individuals and firms make choices that result in market equilibrium wages and labor supply schedules. Can we use these market outcome measures of behavior to

differentiate who is versus who is not in the labor force? 2) What do our economic measures of behavior indicate about who is inside or outside the labor force?

For this paper, we used our first statistical test to examine the choices that individuals make that classify them into the conventionally defined labor force statuses. We chose a multinomial probit model to examine whether being inside and being outside the labor force are distinct labor force statuses. We conducted a test to determine whether the independent variables had a statistically significant effect on the probability of individuals being classified as outside the labor force versus unemployed and as outside the labor force versus employed. If the independent variables had no significant effect on the probability of being classified in one labor force status versus another, we concluded that those two labor force statuses were not distinct.

For our second and third tests, we used annual earnings, weeks worked per year, and usual number of hours worked per week as our measures of economic behavior. If people who are in similar labor force states—employed, unemployed, and outside the labor force—are comparable, we might expect them to exhibit analogous underlying behavior along other dimensions. For example, we might expect that people who are in similar age, education, and location groups to earn analogous levels of income compared to individuals in dissimilar groupings. A year later, some of these same individuals are unemployed and some are outside the labor force. However, if we go back to when they were employed, we expect to find that for this sample, mean earnings are similar. If mean earnings are different, we confirm that for this sample, the underlying behavior is different and consistent with the classification of distinct versus not distinct.

Likewise, some individuals are currently unemployed and others are outside the labor force. A year later, they are all employed. Since they are in the same labor force state and a similar demographic grouping, we might expect their mean earnings to be similar and the states to be indistinct. In each case, we analyzed their incomes before and after the labor force transitions were made. A similar analysis was performed using our measures of labor supply. If the mean earnings, weeks worked, or mean hours worked per week were comparable while employed, we suggest that the underlying behavior is also comparable and the labor force states are not distinct. If the labor force states are distinct, we reject the hypothesis that mean earnings or mean indicators of labor supply are equal for this sample and conclude that the labor force states are distinct.

A major assumption is that behavioral patterns persist. That is, behavioral stimuli contributing to a future transition and labor force outcome persist into the future, and behavioral outcomes reflected in present labor force states are reflected in past behavioral stimuli.

According to the literature and the consensus developed over the past 40 years of research, youth labor force statuses are, in fact, distinct. The evidence presented in this paper suggests that the underlying behavior for teens as measured by mean earnings, mean weeks worked, and mean usual hours worked per year is similar to those outside and inside the labor force. Moreover, we interpret this as an indicator that behaviorally, the labor force states for teens are not distinct. The labor force statuses of teens may have been distinct in the 1980s and early 1990s, but, even then, this distinctiveness was less true for blacks and Hispanics. By the first decade of the 21st century, the labor force statuses of all teenagers were not distinct. This paper's second contribution to the literature involves our ability to tease out this effect with the economic variables: earnings and measures of labor supply.

This paper is organized as follows. The section titled "Literature Summary Review" provides a summary of the relevant literature on the subject. The "Test and Methodology" and "Data and Variables" sections describe our statistical tests and models. "Empirical Analysis" presents the empirical analysis of whether being inside the labor force is a distinctive status from being outside the labor force. Finally, conclusions and implications for further research are provided in the "Conclusions" section.

LITERATURE SUMMARY REVIEW

Table 1 presents the major conclusions from the six relevant studies. Three of the studies offered evidence to support the notion that the labor force categories were distinct for teenagers (ages 16-19).

Only Clark and Summers (1982) and Goldsmith, Veum, and Darity (1995) suggested that the distinction between the statuses of being inside and being outside the labor force was meaningless for both male and female teenagers. Flinn and Heckman (1983) concluded that the labor force statuses were distinct for the sample of white male teenagers. Gonul (1992) found distinct labor force statuses for young women but no such distinction for young men. In addition to finding evidence that the labor force statuses were distinct for male and female teenagers and young people, Tano (1991) reported that the distinction was meaningless for mature men and women (ages 25-44). Jones and Riddell (1999, 2006) found that individuals who were marginally attached but outside the labor force and were waiting to be recalled were similar to those who were unemployed.¹

Study	Data	Findings
Clark and Summers (1982)	Gross Flow Data, 1965-1976	The distinction is meaningless for teenagers.
Flinn and Heckman (1983)	National Longitudinal Survey of Young Men, 1972	The labor force statuses are distinct for this sample of white male high school graduates.
Tano (1991)	CPS Gross Change Data, 1967-1989	The labor force statuses are distinct for teenage males and females (16-19) and young adults (20-24). This distinction is meaningless for mature males and females (25-44).
Gonul (1992)	National Longitudinal Survey of Youth, 1979	The labor force statuses are distinct for young women. The distinctions are meaningless for young men.
Goldsmith et al. (1995)	National Longitudinal Survey of Youth, 1979	On balance, the distinction is meaningless for all groups.
Jones and Riddell (1999, 2006)	Survey of Job Opportunities, wherein records from one month are linked to individual records in subsequent months	Being marginally attached (those who desire but are not seeking work) and being nonattached are distinct labor force statuses. The waiting subcategory of marginally attached is more similar to the unemployed categories than to the rest of the marginally attached and nonattached categories.

TABLE 1 LITERATURE SUMMARY REVIEW

In general, these studies suggest that age and, to a lesser extent, gender are influential factors in the distinction between these labor force statuses. First, the statuses of being outside versus being inside the labor force are more distinct for teenagers than for mature adults. Second, there appears to be a slight difference in these findings by gender; Gonul (1992) found that these two labor force statuses were distinct for young women but meaningless for young men.

Our study focuses more on the perspectives of age, race, and ethnicity and less on the perspective of gender. In addition, our study period overlapped with that of the previous studies in this field for comparison purposes.

TEST AND METHODOLOGY

The multinomial probit model is a well-established technique. Poterba and Summers (1995) used the multinomial methodology to examine the effects of unemployment benefits with classification errors in labor market transitions. Unlike Poterba and Summers, we used the results from the multinomial model as benchmarks with which to compare the results from our behavioral outcomes approach. The dependent variable is labor force status: employed, unemployed, or outside the labor force. The base category is outside the labor force. We tested whether the independent variables had a statistically significant effect on the probability of being classified as outside the labor force versus unemployed and as outside the labor force status versus another, we concluded that those two labor force statuses are the same. The test is a Wald test, with $\beta_1 \dots \beta_k$ being the coefficients for the $X_1 \dots X_k$ independent variables, and J outcome categories with one category, the base. With three labor force states, J = 3. The first hypothesis is that the X_k independent variables significantly affect the likelihood of being unemployed (u) versus outside the labor force (o). If not, and if the β coefficients are not significantly different from zero, unemployed and outside the labor force are not distinct. This corresponds to the test:

$$H_0: \beta_1, u/o = \dots \beta_k, u/o = 0,^2$$
(1)

where the base category is o, outside the labor force.

The second hypothesis is that employed (e) and outside the labor force (o) are distinct labor force states. The hypothesis is similar to the previous one but with different outcome comparisons. If the X_k independent variables do not significantly affect the chance of being employed versus outside the labor force, these two labor force states are indistinguishable. The equivalent test is:

H₀:
$$\alpha_1$$
, $e/o = ... \alpha_k$, $e/o = 0$. (2)

We also examined how the bias associated with the misclassification error in the independent variable might influence our conclusions.

For the second research strategy, we adopted a completely different approach and focused on the observed labor market differences using both earnings and measures of labor supply during the year prior to the transition and the year after the transition as indicators of labor market behavior. The sample for our test is based on those individuals who transition to different labor force categories. As illustrated in Table 2, a person can transition from one of the initial three labor force statuses to another one of the three states, creating a 9-cell matrix. Each cell is a different sample. There are nine transition samples in the three-state model. Because the triggering mechanism that allows us to identify behavioral similarities or differences is a transition, we excluded those who remain in their current labor force status from the sample. For the purposes of this analysis, only those who are off-diagonal are included in the sample.

TABLE 2TRANSITION-BASED APPROACHES

	Ε	U	0
Е	EE	EU	EO
U	UE	UU	UO
Ο	OE	OU	00

E = employed; U = unemployed; O = outside the labor force.

Our labor force transition variables give information on the labor force state in each one of the two periods. For example, oo consists of individuals who were outside the "labor force" in both periods; ee those who were employed in both time periods; uu those who were unemployed in both periods; ou those who transitioned from "outside the labor force" to unemployed; eu from employed to unemployed; eo

from employed to "outside the labor force"; uo from unemployed to "outside the labor force"; ue from unemployed to employed; and oe from "outside the labor force" to employed. If the states of "inside" and "outside" the labor force are behaviorally distinct, we reject the hypothesis that the earnings of individuals in the two different labor force categories are equal. To test the idea that people who are in comparable labor force states are behaviorally comparable and are expected to be so along other economic dimensions, we estimated standard Mincer earnings equations and labor supply equations with transition categories as independent variables. If those who transition from employment to unemployment are behaviorally similar to those who transition from employment to a status outside the labor force, we might expect their mean earnings to be similar when they were employed. If they are not and we find that mean earnings or mean indicators of labor supply are different, we find that for this sample of labor force movers their labor force status is distinct.

The estimated equation pertaining to Earnings "Before" is:

$$Y_{ib} = \beta_0 + \beta_1 exp_{i0} + \beta_2 exp_{i0}sq + \beta_3 sch_{i0} + \beta_4 year_1 + \beta_5 year_1 eu_{i0} + \beta_6 eu_{i0} + \beta_7 ou_{i0} + \beta_8 uo_{i0} + \beta_9 oe_{i0} + \beta_{10} ue_{i0} + \varepsilon_{i0},$$
(3)

and the estimated equation pertaining to Labor Supply "Before" is:

$$L_{s0} = \beta_0 + \beta_1 wage_{s0} + \beta_2 income_{s0} + \beta_3 year_1 + \beta_4 year_1eu_{s0} + \beta_5 eu_{s0} + \beta_6 uo_{s0} + \beta_7 ou_{s0} + \beta_8 ue_{s0} + \beta_9 oe_{s0} + \varepsilon_{s0},$$
(4)

where Y_{ib} is mean earnings of individual (i) or mean indicator of labor supply the year before a transition was made, with experience, schooling, and year being the independent variables for the earnings equation, and wage, income, and year being the independent variables for the labor supply equation. The coefficient for eu, β_6 , gives the mean difference in earnings between the sample of employed individuals the year before they transitioned to unemployment and the eo group, who transitioned to outside the labor force, while β_5 gives the mean difference in labor supplied. In each instance, if the mean difference is statistically insignificant, we conclude that for these two samples, inside and outside the labor force are indistinct labor force states. The third test uses information on mean earnings after individuals transition from being unemployed to being employed (UE) or from being outside the labor force to being employed (OE). In this instance, individuals were inside the labor force, unemployed (U), and outside (O) the labor force—two distinct labor force states—and transitioned to employment. If the behavior of individuals who are in comparable labor force states is similar, our mean indicators of labor force behavior should be similar. We test this by again estimating our earnings and our labor supply schedules. The variables, however, are after the transition. The estimated equation pertaining to Earnings "After" is:

$$Y2_{i2} = \alpha_0 + \alpha_1 exp 2_{i2} + \alpha_2 exp 2_{i2} sq + \alpha_3 sch 2_{i2} + \alpha_4 year 2_2 + \alpha_5 year 2_2 ue_{i2} + \alpha_6 eu_{i2} + \alpha_7 eo_{i2} + \alpha_8 ou_{i2} + \alpha_{10} ue_{i2} + \varepsilon_{i2},$$
(5)

and the estimated equation pertaining to Labor Supply "After" is:

$$L2_{s2} = \alpha_0 + \alpha_1 wage 2_{s2} + \alpha_2 income 2_{s2} + \alpha_3 year 2_2 + \alpha_4 year 2_2 eu_{s2} + \alpha_5 eu_{s2} + \alpha_6 uo_{s2} + \alpha_7 ou_{s2} + \alpha_8 ue_{s2} + \varepsilon_{s2},$$
(6)

where Y_{ia} is the annual earnings of individual (i) after the transition and the independent variables are the same as those from the earnings equations. The coefficient on α_{10} gives the mean difference in earnings between the sample of unemployed people who transitioned to employment and those who transitioned from outside the labor force to employment. If the coefficient, α_{10} , is statistically insignificant, we conclude that these two samples are indistinct. For the labor supply equation, if the relevant coefficient α_8 is statistically insignificant, we again conclude that inside and outside the labor force are indistinguishable states.

DATA AND VARIABLES

The analysis in this paper is based on data from the March 1990 and March 2000 Current Population Survey (CPS) (Current Population Survey, 1990, 2000) and a panel dataset that was constructed by matching and linking people in the March 1989, 1990, and 1991 CPS; the March 1999, 2000, and 2001 CPS; and the March 2006, 2007, and 2008 CPS (Madrian & Lefgren, 2000; Eanswythe Grabowski, Unicon Research Corporation, personal communication, 2008).

The final sample consisted of white, black, and Hispanic males and females between the ages of 16 and 45 in the two cross-sectional datasets and between the ages of 16 and over 65 in the three-panel datasets.

In our first model, the control variables included measures that were designed to capture human capital. The education measure is a categorical variable that is coded as follows: less than high school, high school diploma, some college, or college degree or higher. Potential experience is computed as age minus years of education minus five. Other variables included two measures of an individual's reservation income or spousal potential income; the tightness of the labor market, as measured by the unemployment rate in the state of residence; and variables that capture the attributes of location, which include the particular region of the country and the size of the city in which an individual resides.

Table 3 provides the variable definitions and, for illustrative purposes, the mean statistics for a sample of the male civilian population between the ages of 16 and 65 from the 1990 CPS. The sample statistics were computed separately for those in the labor force and those who dropped out. Although differences exist, as previously discussed, these differences do not necessarily imply a bias. For example, we expected that individuals in the labor force, on average, would be younger than labor force dropouts because of health issues and retirement choices associated with age. Furthermore, we might expect individuals in the labor force. This expectation as a proxy for productivity compared with those who are outside the labor force. This expectation arises because of employers' incentives to maximize profits. We can control for these influences in our estimated equations. The following section presents the results of our empirical investigation of whether being inside and being outside the labor force statuses.

Variable		ARCH 19 e the Lab		Outsi	de the Lal	oor Force
variable	White	Black	Hispanic	White	Black	Hispanic
Education - <9 years	.060	.058	.269	.194	.256	.424
Education - 9-11 years	.090	.148	.158	.190	.278	.203
Education - 12 years	.368	.436	.312	.349	.330	.260
Education - 13-15 years	.214	.213	.162	.143	.101	.077
Education - 16+ years	.269	.146	.100	.125	.036	.037
Age <20	.030	.038	.056	.046	.053	.093
Age >55	.104	.082	.061	.530	.366	.327
Potential Experience	19.2	18.6	18.1	33.4	29.2	28.5
Potential Experience Squared	514	495	477	1,335	1,119	1,099
Married	.672	.507	.623	.626	.388	.541
Spouse's Education	12.991	12.8	10.7	11.7	11.1	9.1
City Size - 100k or less	.661	.585	.428	.695	.538	.483
City Size - 3 Million or more	.136	.227	.351	.130	.307	.313
Residence - Northeast	.191	.175	.161	.167	.155	.210
Residence - South	.273	.519	.296	.310	.493	.303
Residence - West	.218	.080	.454	.224	.079	.426
Residence - Midwest	.185	.125	.065	.159	.177	.037
State Unemployment Rate	5.59	5.69	5.80	5.71	5.92	5.85
% Unemployment	4.9	10.3	7.2			
Number of Observations	34,750	2,948	4,609	3,936	645	547

 TABLE 3

 SAMPLE STATISTICS FOR MEN BY LABOR FORCE STATUS, RACE, AND ETHNICITY,

 MARCH 1990

Source: Current Population Survey (1990).

EMPIRICAL ANALYSIS

Labor Force Status: Multinomial Probit Model

Table 4 presents the results of a Wald test that was conducted to assess whether the independent variables from our multinomial probit model had a statistically significant effect on the probability of being classified as outside the labor force versus unemployed and as outside the labor force versus employed. If the independent variables had no distinguishable effect on the probability of being in one labor force status versus another, we concluded that those two labor force statuses are the same.

<u> </u>		IAL PROBIT TES	, ,	0.0
Sample		990	20	UU
	Outside vs Unemployed	Outside vs Employed	Outside vs Unemployed	Outside vs Employed
White Males (25- 44)	124.3 (1)	726.6 (1)	65.7 (1)	582.7 (1)
White Females (25-44)	250.6 (1)	1,423.8 (1)	156.4 (1)	1,044.7 (1)
Black Males (25- 44)	36.4 (1)	204.7 (1)	18.5 (2)	120.4 (1)
Black Females (25-44)	38.4 (1)	359.8 (1)	19.9 (2)	159.8 (1)
Hispanic Males (25-44)	18.4 (2)	104.5 (1)	22.4 (2)	102.5 (1)
Hispanic Females (25-44)	56.4 (1)	319.2 (1)	52.5 (1)	263.5 (1)
White Males (16- 19)	52.9 (1)	104.3 (1)	9.5 (2)	12.9 (2)
White Females (16-19)	23.9 (1)	38.2 (1)	7.9 (2)	14.7 (2)
Black Males (16- 19)	12.1 (2)	19.7 (1)	11.1 (2)	8.1 (2)
Black Females (16-19)	11.0 (2)	10.3 (2)	1.4 (2)	4.0 (2)
Hispanic Males (16-19)	16.8 (1)	21.7 (1)	5.4 (2)	5.3 (2)
Hispanic Females (16-19)	1.6 (2)	7.4 (2)	7.0 (2)	2.7 (2)

 TABLE 4

 MULTINOMIAL PROBIT TEST, 1990, 2000

Sample: The specified demographic category. The teenage sample consists of high school graduates.

(1) Reject the hypothesis at the .01 level for a chi-squared test that all coefficients except intercepts associated with the given pair of alternatives are 0 and the labor forces are distinct.

(2) Cannot reject the hypothesis at the .01 level for a chi-squared test that all coefficients except intercepts associated with the given pair of alternatives are 0 and the alternatives can be combined.

Note: Appendices A and B show the multinomial probit regression results for 1990 and 2000, respectively.

In 1990, the test results for mature white males and females, black males and females, and Hispanic females suggest that being inside and being outside the labor force are distinct labor force statuses. This distinction, however, does not apply for mature Hispanic males. For teenagers (ages 16-19), we found that the results were distinct for white male and female teens and Hispanic male teens. For black male teens, the outside the labor force versus unemployed comparison was not distinct, while the evidence suggests that the employed to outside the labor force comparison was distinct. The results for black and Hispanic female teens were that inside and outside the labor force were not distinct labor force states. For both of those two groups, we were unable to reject the hypothesis that the independent variables had any statistically significant effect on the probability of being in one labor force state versus the other.

A similar analysis was conducted using data from 2000 to investigate how these results may have changed over time. The results are also presented in Table 4. For our sample of mature white males, and separately for our sample of mature white females, the findings are similar to those recorded in 1990. We were able to reject the hypothesis that the coefficients from our multinomial probit model are statistically

insignificant, thus concluding that inside and outside the labor force are two distinct states. For mature black males and black females, more substantive changes between 1990 and 2000 were found. For the 2000 data, the Wald test did not reject the hypothesis that outside and inside were indistinct labor force states. This result contrasts with the findings from 1990 for which this hypothesis was rejected. Finally, for teenagers in 2000, the labor force categories were no longer distinct across all demographic groups.

Labor Force Status: Earnings

We conducted an analysis of the distinctions between labor force statuses based on differences in the earnings of individuals before they transitioned from employment to unemployment compared with the earnings of individuals who were transitioning from being employed to being outside the labor force. If we examine the labor force states before the transition, we might expect to find that mean earnings are not distinct since they were in the same labor force state at that time. Furthermore, for those who transitioned from being outside the labor force to employment or from unemployment to employment, the mean earnings after their transitions should be comparable.

We used an estimating equation based on the well-established Mincer earnings function; however, we used the level of annual earnings from wage and salary data versus the log of earnings as the dependent variable. Our inference of behavior was based on absolute differences in earnings versus the percentage of differences. The independent variables included potential experience, potential experience squared, schooling, the year of the survey, the interaction of year with an indicator of labor force status, the region of the country, the interaction of potential experience with schooling, and our transition variables. The consensus over decades of research suggests that experience has a positive effect on earnings but at a decreasing rate. As the amount of an individual's schooling—a proxy for productivity—increases, so do her earnings. The results of our estimated equations were generally consistent with those of previous research.

In the few instances for which this was not the case, the problem may be attributable to a small sample size and the presence of multicollinearity. For example, the fact that experience squared is simply a multiple of experience produced some results that ran counter to our expectations. Experience had a negative effect on earnings at an increasing rate. In this instance, dropping experience squared from the equation was sufficient to yield the positive experience effect. In other cases, instrumental variables were used to correct for the magnified induced endogeneity between experience and schooling when the sample was restricted to teenagers with 12 years of schooling. The earnings test results are presented in Tables 5 and 6.

Mean Difference (1989-1991)				Mean Difference (2006-2008)	
Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾
975.66***	682.52	3.47	2,952.62	-576.71	-755.09
6,909.77*	6,341.88*	5,514.57*	7,759.98*	3,337.68	603.91
-405.04	-1,426.49	-959.42	956.28	-524.39	2,021.95
173.45	3,709.74*	-7,018.46	4,171.69	1,364.98	-8,274.96**
			,		
2,081.69	-169.32	1,245.38	2,854.42	2,716.56	-122.49
942.89	3,200.90***	2,580.89	2,121.77	6,375.88**	1,759.18
	Before EU-EO ⁽¹⁾ 975.66*** 6,909.77* -405.04 173.45 2,081.69	Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ 975.66*** 682.52 6,909.77* 6,341.88* -405.04 -1,426.49 173.45 3,709.74* 2,081.69 -169.32	Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ Before EU-EO ⁽¹⁾ 975.66*** 682.52 3.47 6,909.77* 6,341.88* 5,514.57* -405.04 -1,426.49 -959.42 173.45 3,709.74* -7,018.46 2,081.69 -169.32 1,245.38	Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ 975.66*** 682.52 3.47 2,952.62 6,909.77* 6,341.88* 5,514.57* 7,759.98* -405.04 -1,426.49 -959.42 956.28 173.45 3,709.74* -7,018.46 4,171.69 2,081.69 -169.32 1,245.38 2,854.42	Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ Before EU-EO ⁽¹⁾ After UE-OE ⁽²⁾ Before EU-EO ⁽¹⁾ 975.66*** 682.52 3.47 2,952.62 -576.71 6,909.77* 6,341.88* 5,514.57* 7,759.98* 3,337.68 -405.04 -1,426.49 -959.42 956.28 -524.39 173.45 3,709.74* -7,018.46 4,171.69 1,364.98 2,081.69 -169.32 1,245.38 2,854.42 2,716.56

 TABLE 5

 LABOR FORCE STATUS EFFECTS ON EARNINGS BEFORE AND AFTER TRANSITION

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

(1) The mean difference in earnings between those transitioning from employment to unemployment (EU) and those transitioning from employment to outside the labor force (EO) before the transition was initiated.

(2) The mean difference in earnings between those transitioning from unemployment to employment (UE) and those transitioning from outside the labor force to employment (OE) after the transition was initiated.

*Statistically significant at the .01 level; **statistically significant at the .05 level; ***statistically significant at the .10 level.

Note: Appendices C, D, and E show the labor force status effects on earnings, by race/ethnicity and age group, from 1989 to 1991, 1999 to 2001, and 2006 to 2008, respectively, both before and after the transition.

TRANSITION									
Sample		Difference D-1991)	Mean Difference (1999-2001)		Mean Difference (2006-2008)				
Before EU-EO ⁽¹⁾		After UE-OE ⁽²⁾			Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾			
Males									
16-19	776.83	26.80	451.61	3,668.53***	-641.19	1,304.67			
25-44	5,174.97*	2,941.04***	-847.07	4,286.03	-3,059.88	-12,547.46*			
Females									
16-19	1,281.25**	-169.12	3,362.73	-831.94	137.47	716.50			
25-44	187.50	2,910.31*	525.03	5,881.40*	4,768.41***	5,026.68***			

TABLE 6LABOR FORCE STATUS EFFECTS ON EARNINGS BY GENDER BEFORE AND AFTERTRANSITION

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

(1) The mean difference in earnings between those transitioning from employment to unemployment (EU) and those transitioning from employment to outside the labor force (EO) before the transition was initiated.

(2) The mean difference in earnings between those transitioning from unemployment to employment (UE) and those transitioning from outside the labor force to employment (OE) after the transition was initiated.

*Statistically significant at the .01 level; **statistically significant at the .05 level; ***statistically significant at the .10 level.

Note: Appendices F, G, and H show the labor force status effects on earnings, by gender and age group, from 1989 to 1991, 1999 to 2001, and 2006 to 2008, respectively, both before and after the transition.

First, consistent with the analyses presented in the previous sections, there was an effect of age on labor force status. Based on this test, the labor force statuses were distinct for the more mature age group (i.e., the 25-44 group) but less so for teenagers. For mature whites, this distinction was observed for the 1989-1991 and 1999-2001 periods but not for the 2006-2008 period. For white teens, the results were inconclusive for the 1989-1991 period. In this instance, the findings were significant for the before-transition group but not for the after-transition group. The labor force statuses for white teens were not distinct for the other time periods. Second, these same general patterns were not observed for blacks or Hispanics. For adult blacks and Hispanics, the labor force statuses were inconclusive in the 1989-1991 period, and inconclusive in the 2006-2008 period. However, for black and Hispanic teenagers, no distinction was found.

Table 6 presents our results by gender. Perhaps the most interesting finding here is the change over time in the distinctiveness of labor states between mature males and females. In the 1989-1991 period, the labor force statuses for mature males were distinct, whereas the results for mature females were inconclusive. For females, the labor force statuses were distinct only for those after the transition. However, by the 2006-2008 period, the distinctiveness of the labor force statuses had changed by gender. In the 2006-2008 period, the labor force statuses were inconclusive for males, and the labor force statuses were now distinct only for those after the transition. For females, the labor force statuses were now distinct both before and after the transition.

Our tests for differences are very sensitive to measurement error, which makes it more difficult to reject the null hypothesis of no difference. For example, correcting for the reliability of our schooling variable by 0.08, such that our index was 0.92, not only increased our coefficient for schooling from 4,886 to 36,132 but also increased our indicator of labor force status, EU, from 4,768 to 11,988 because of the correlation between schooling and EU. Finally, the standard errors relative to the coefficients were smaller, with the correction increasing our t-statistic (see Table 7).

Variable	Ordinaı Squares R	ry Least Regression	Errors-in-Variables Regression	
	Coefficient	Std. Error	Coefficient	Std. Error
Experience	3,542	916	40,442	4,954
Experience Squared	-39.6	16.5	-522.4	65.6
Schooling	4,886	642	36,132	4,177
Experience/Schooling Interaction	-164	34.8	-1,755	212.9
Midwest	-1,955	1,665	2,716	1,589
South	159	1,482	5,415	1,477
West	-530	1,565	3,695	1,485
EU	4,768	2,479	11,988	2,381
OE	-16,409	1,246	-15,336	1,104
UO	-9,903	2,271	-9,775	1,997
UE	-5,178	1,904	-1,847	1,731
OU	-15,884	2,652	-6,521	2,641
Year	179	1,094	1,087	970
Year EU	-5,568	3,753	-8,361	3,321
Constant	-53,301	11,668	-593,455	72,279

 TABLE 7

 LABOR FORCE STATUS SENSITIVITY TEST SHOWING EARNINGS FOR FEMALES

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

Sample: Females aged 25-44, 1989-1991.

The conclusions from this analysis confirm one result based on the multinomial probit analysis. The classification of being inside and being outside the labor force was less meaningful for white teenagers compared with a similar classification of labor force statuses for mature whites. We also found major differences according to race and ethnicity in these findings. Compared with whites, the labor force statuses for both blacks and Hispanics were behaviorally less distinct, and when comparing black and Hispanic mature adults with black and Hispanic teens, the labor force statuses for teens were consistently indistinct across all three time periods.

Labor Force Status: Labor Supply

We continued our investigation into whether being inside and being outside the labor force were distinct labor force statuses using weeks worked within the last year as our indicator of labor force behavior. Numerous authors have identified problems with OLS when the dependent variable is censored. To correct for this censoring, we estimated a Tobit regression.

As in the previous section, the identifying factor in the analysis is that labor force statuses are behaviorally distinct if individuals transitioning from employment to unemployment, compared with those transitioning from being employed to being outside the labor force—or those transitioning from unemployment to employment, compared with those transitioning from being outside the labor force to being employed—exhibit significant differences in their labor force behavior.

We estimated a labor supply function using weeks worked within the last year as our dependent variable. We also excluded self-employed individuals; thus, the behavioral response was based on a sample that included only wage and salary workers. The independent variables were hourly wage, annual income, labor force transition states, and other control variables, such as year, schooling, and region of the country. We initially estimated a basic labor supply function using only our indicator of hourly wage, which was calculated as income from wage and salary last year divided by weeks worked over the last

year. This measure of the wage rate was the average weekly earnings over the last year. The dependent variable was the weeks worked over the last year. This wage measure suffers from the well-known division bias (Borjas, 1980). As illustrated by Borjas, if the hours of work are underreported, the constructed indicator of wages is then artificially high, which generates a spurious negative correlation between hours of work and weekly earnings. Table 8 shows that our model yielded a negative sign for the weekly average wage.

Variable _	Biased	Biased Wage		ed Wage	Instrumental Variables Tobit	
	Coefficient	Std. Error	Coefficient	Std. Error	Coefficient	Std. Error
Wage	097	.008	.021	.012	.299	1.933
Income	.003	.000	.000	.000	006	.046
Year	-5.00	2.29	-1.17	2.88	3.49	32.72
Year EU	7.41	4.71	6.32	6.01	-7.07	93.54
EU	-10.8	3.92	-8.8	5.00	6.7	108.07
OE	-8.45	3.54	-17.92	4.48	-10.86	49.72
OU	-15.8	4.42	-27.0	5.68	-23.3	27.73
UE	-4.88	2.85	-11.73	3.59	-8.10	25.90
UO	-11.2	3.71	-19.6	4.65	-16.1	25.55
Midwest	-2.94	3.44	69	4.35	-5.70	35.58
South	.879	2.83	-4.326	3.57	-9.107	33.74
West	1.04	4.36	2.57	5.44	42	22.49
Constant	39.0	3.25	45.7	4.14	44.3	12.22

TABLE 8
TOBIT LABOR FORCE STATUS SPECIFICATION TEST SHOWING WEEKS WORKED

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

Sample: Blacks aged 25-44, 1989-1991.

A major concern is how the other independent variables might be affected—specifically, the coefficients and standard errors for our test of being inside versus being outside the labor force. The second column presents our coefficient estimates using our bias-corrected wage variable. The constructed wage variable is income from wage and salary divided by the usual hours worked per week in the last year. This wage variable is a measure of the usual average earnings per week and does not suffer from cross-division by the dependent variable. Of particular interest is how sensitive the other independent variables are to the corrected indicators of wage. Using this new wage specification, we found that those who transitioned from being employed to being outside the labor force. The coefficient, however, was not as negative in the corrected equation compared with the biased equation by approximately two weeks.

Although our wage variable was corrected for division bias, the divisor or hours variable still might have been subject to measurement error. To test whether there was endogeneity with respect to our new wage variable, which may have biased our findings, we next estimated an instrumental Tobit model. Instrumental variables have been found to be effective as a correction for endogeneity with linear models but less so in a nonlinear context (Amemiya, 1985, 1990). We nevertheless estimated a Tobit instrumental variable model as a further examination of the robustness of our findings. The exogenous instrument was experience, which can be considered to affect labor supply through wages. The results are presented in Table 8. Consistent with similar corrections in a linear context, the estimates were less precise than those

from single equation estimators. Moreover, the Wald test of the exogeneity of the instrumented variable was not significant, which suggests that our nonlinear Tobit may have been a valid, consistent estimator.

Table 9 presents our weeks worked results for teenagers and mature adults by race and ethnicity. For white teens, the results support our findings using the probits. For this demographic, being inside the labor force and being outside the labor force were distinct labor force statuses in the early years, 1989-1991, but they became less distinct in later years. For black teens, the results were inconclusive in the earlier period but became less distinct in the later years. Hispanic teens inside the labor force and those outside the labor force consistently showed similar behavior. Furthermore, these findings highlighted our observations from the analysis using earnings as our indicator of behavior. Weeks worked, as our measure of labor supply, replicated the findings for teenagers using earnings. In the earlier years, the labor force statuses of teens were more likely to be classified as distinct. Over time, this observation changed. By 2006-2008, teenagers who were inside and outside the labor force were behaviorally similar. The group that was most likely to differ with respect to labor force status was mature adults, individuals in their prime years for participating in the labor force. These individuals are less likely to be untried entrants into the labor force, and they are more likely to have a personal incentive to work. In fact, we found that mature adults were more likely to be behaviorally distinct than were teens.

TABLE 9 LABOR FORCE STATUS EFFECTS ON WEEKS WORKED PER YEAR BEFORE AND AFTER TRANSITION

Sample		Mean Difference (1989-1991)		Mean Difference (1999-2001)		Mean Difference (2006-2008)	
	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	
Whites							
16-19	-6.94**	5.80***	3.68	6.48	2.69	1.88	
25-44	4.06**	4.69*	1.13	1.33	-1.33	-7.01*	
Blacks							
16-19	-6.27	4.99	7.26	40	-7.46	31	
25-44	-8.96**	.79	4.88	-8.10	-16.19*	1.29	
Hispanics							
16-19	2.08	72		-12.17		16.54	
25-44	-5.87	1.18	31†	75	47	-3.21	

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

(1) The mean difference in weeks worked between those transitioning from employment to unemployment (EU) and those transitioning from employment to outside the labor force (EO) before the transition was initiated.

(2) The mean difference in weeks worked between those transitioning from unemployment to employment (UE) and those transitioning from outside the labor force to employment (OE) after the transition was initiated.

*Statistically significant at the .01 level; **statistically significant at the .05 level; ***statistically significant at the .10 level.

[†]Dropped income from equation.

Note: Appendices I, J, and K show the labor force status effects on weeks worked per year, by race/ethnicity and age group, from 1989 to 1991, 1999 to 2001, and 2006 to 2008, respectively, both before and after the transition.

Table 10 provides the results of an examination of the question of labor force distinctiveness that uses usual hours worked per week as the measure of labor supply. The estimation model is OLS because hours last year did not reflect the censoring observed using weeks worked. The wage variable then became the average weekly earnings last year. Notably, for teens, the findings were similar to the weeks-worked results. Again, for white teens over the 1989-1991 period, being inside and being outside the labor force were behaviorally distinct labor force states. This distinction was no longer evident for the 2006-2008 sample. For black teens, we observed that the labor force statuses were inconclusive in the earlier years and behaviorally indistinct by the 2006-2008 period. The results for Hispanic teens were consistent in that being inside and being outside the labor force was behaviorally indistinct.

TABLE 10
LABOR FORCE STATUS EFFECTS ON HOURS WORKED PER WEEK BEFORE AND
AFTER TRANSITION

Sample		Mean Difference (1989-1991)		Mean Difference (1999-2001)		ifference -2008)
	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾
Whites						
16-19	7.59*	4.03***	5.49	-2.89	-1.88	4.60
25-44	4.26*	4.93*	4.42*	5.25*	2.97*	5.00*
Blacks						
16-19	18.60**	-1.76	-2.53	11.91*	2.64	8.58
25-44	2.86	1.60	2.67	-2.45	41	3.19
Hispanics						
16-19	-4.71	-4.00	11.11	2.04		7.73
25-44	1.83	-3.89	11.73	3.95**	1.74	.61

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

(1) The mean difference in hours worked between those transitioning from employment to unemployment (EU) and those transitioning from employment to outside the labor force (EO) before the transition was initiated.

(2) The mean difference in hours worked between those transitioning from unemployment to employment (UE) and those transitioning from outside the labor force to employment (OE) after the transition was initiated.

*Statistically significant at the .01 level; **statistically significant at the .05 level; ***statistically significant at the .10 level.

Note: Appendices L, M, and N show the labor force status effects on hours worked per week, by race/ethnicity and age group, from 1989 to 1991, 1999 to 2001, and 2006 to 2008, respectively, both before and after the transition.

Consistent with our earnings results, labor force statuses for mature whites were behaviorally more distinct relative to the findings for blacks and Hispanics. The results were even more consistent when we considered hours. For mature whites, being inside and being outside the labor force were behaviorally distinct in all three sample periods, whereas this was not the case for blacks and Hispanics.

Table 11 presents the labor supply results using the usual hours worked by gender. The definitive finding here is that the labor force statuses were behaviorally more distinct for adult females than for adult males. Moreover, this result diminished over time for adult males but not for adult females. The findings with respect to earnings and hours by gender were similar. The results suggest differences among

mature adults, with females' labor force statuses being relatively more distinct in later years than males' statuses.

Sample		Mean Difference (1989-1991)Mean Difference (1999-2001)Mean Difference (2006-2003)				
	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾	Before EU-EO ⁽¹⁾	After UE-OE ⁽²⁾
Males						
16-19	5.79***	2.32	2.14	2.23	3.37	3.50
25-44	1.08	2.50***	1.43	1.11	78	59
Females						
16-19	8.04*	2.70	21.25	-9.00	2.73	6.01
25-44	4.94*	3.05*	2.56	4.25*	3.19**	5.03*

TABLE 11LABOR FORCE STATUS EFFECTS ON HOURS WORKED PER WEEK BY GENDERBEFORE AND AFTER TRANSITION

Source: Panel data constructed from March 1989, 1990, and 1991 CPS; March 1999, 2000, and 2001 CPS; and March 2006, 2007, and 2008 CPS.

(1) The mean difference in hours worked between those transitioning from employment to unemployment (EU) and those transitioning from employment to outside the labor force (EO) before the transition was initiated.

(2) The mean difference in hours worked between those transitioning from unemployment to employment (UE) and those transitioning from outside the labor force to employment (OE) after the transition was initiated.

*Statistically significant at the .01 level; **statistically significant at the .05 level; ***statistically significant at the .10 level.

Note: Appendices O, P, and Q show the labor force status effects on hours worked per week, by gender and age group, from 1989 to 1991, 1999 to 2001, and 2006 to 2008, respectively, both before and after the transition.

CONCLUSIONS

This paper examined whether being inside and being outside the labor force are two distinct labor force statuses. People are unemployed if they do not have a job and are actively searching for one. If they do not have a job and are not searching, they are outside the labor force. Using three different tests, we showed how segments of the population, although technically classified as outside the labor force, are behaviorally similar to those classified as inside the labor force. Moreover, our economic measures using earnings, weeks worked, and hours worked are somewhat effective in tracking this distinction.

Our multinomial probit analysis and tests found that the labor force statuses for mature adults, with the exception of Hispanic males were distinct in 1990. In 1990, among teenagers, the results for white males and females and Hispanic male teens suggested that being inside and being outside the labor force are distinct labor force statuses. However, for black male teens, only the employed to outside the labor force comparison was distinct, and the black and Hispanic teens were not distinct for both comparison groups.

Previous studies have noted that the composition of the labor force is changing and that workforce dropouts are becoming an increasing share of the population. This is consistent with the observation that an increasing share of the dropouts may still want to work and have behavioral outcomes similar to those who are classified as inside the labor force. We found that the patterns observed in 1990 were no longer

present in 2000. For mature adults, labor force status was significantly more heterogeneous in terms of outcomes. Except for Hispanic males, all adult groups were classified as having distinct labor force statuses in 1990. However, by 2000, only three of the six adult groups could be classified as having distinct labor force outcomes across both the outside the labor force versus unemployed classification and the outside the labor force versus employed classification. Furthermore, by 2000, a comparison of the distinct and indistinct statuses showed that the labor force categories were not distinct for teenagers, in contrast with the findings for teenagers in 1990.

The behavioral test of labor force status using earnings suggested that the distinction between the labor force statuses is less relevant for teenagers than for mature adults; this is particularly true for whites. The results of the earnings test by gender demonstrate that differences exist between teens and mature adults. For both genders, we observed that labor force statuses are more distinct for mature adults than for teenagers. We also observed that since the 1989-1991 period, labor force statuses for females have become increasingly more distinct than those for males.

We next investigated the question of behavioral differences in relation to labor force status using two different measures of labor supply. We found the measures to be more consistent in their patterns for whites than for blacks and Hispanics. However, as a general conclusion, being inside and being outside the labor force were behaviorally distinct states—more so for mature adults than for teenagers. We also illustrated the sensitivity of our results to measurement error. Although previous results comparing linear and nonlinear measurement error models suggested that the results may be approximately the same, differences do exist. We found that replacing our biased wage variable with a better proxy variable yielded an estimated wage effect that was consistent with the theory and was larger than the biased variable. We also observed that our test of being inside versus being outside the labor force was affected by the biased variable and the correlation of the biased variable with the indicator of labor force status. Finally, gender was found to have an effect. For mature adults, being inside and being outside the labor force status.

The answer to our question of who is inside and who is outside the labor force is first primarily influenced by age. The distinction between being inside and being outside the labor force is a behaviorally meaningless distinction for teenagers when compared with more mature adults. Second, we identified differences by race and ethnicity. For mature adults (aged 25-44), being inside and being outside the labor force are more often behaviorally distinct states for whites than for blacks and Hispanics.

Finally, gender has an effect. The behavioral distinction between being inside and being outside the labor force is currently a more valid labor force distinction for females than for males. With the historic rise of women in the labor force, the distinction between those working and those not working has become clearer. The differences in mean earnings for women working or unemployed are different from women classified as outside the labor force. This was not the case in the 1980s and 1990s. For men, the pattern is the opposite—we are unable to distinguish between differences in mean earnings by whether a man is working or outside the labor force in later years. With respect to labor supply, the hours worked per week shows a consistent distinction for adult women between those inside and outside the labor force when compared with men. For teens, the distinction is meaningless for our later samples for both males and females.

ENDNOTES

- 1. See Millimet, Nieswiadomy, Ryu, and Slottje (2003) for a similar summary, although the focal points of our research are different.
- 2. β_1 , u/o is notation for the contrast $\beta_1 u \beta_1 o$, where β_1 is the effect of the first independent variable X₁ on the probit of the outcome of unemployed versus the outcome of outside the labor force (see Long, 1997, pages 155, 158).

ACKNOWLEDGEMENTS

We are grateful to Thomas R. Saving for his extensive comments and criticism, Richard B. Freeman for his incisive observations and suggestions, and Peter Jackson for his penetrating comments. John McDowell's comments are also greatly appreciated, as are those of anonymous referees. The authors, however, are solely responsible for any remaining errors.

The research is based upon the IPUMS-USA database: Steven Ruggles, Katie Genadek, Ronald Goeken, Josiah Grover, and Matthew Sobek. *Integrated Public Use Microdata Series: Version* 6.0 [Machine-readable database]. Minneapolis: University of Minnesota, 2015.

REFERENCES

- Amemiya, Y. (1985). Instrumental variable estimator for the nonlinear errors-in-variables model. *Journal* of Econometrics, 28, 273–289.
- Amemiya, Y. (1990). Two-stage instrumental variables estimators for the nonlinear errors-in-variables model. *Journal of Econometrics*, 44, 311–332.
- Autor, D. H. (2001). Wiring the labor market. Journal of Economic Perspectives, 15, 25-40.
- Borjas, G. J. (1980). The relationship between wages and weekly hours of work: The role of division bias. *Journal of Human Resources, 15,* 409–423.
- Clark, K. B., & Summers, L. H. (1982). The dynamics of youth unemployment. NBER chapters. In, *The youth labor market problem: Its nature, causes, and consequences* (pp. 199–234). National Bureau of Economic Research, Inc.
- Current Population Survey (CPS) (1990). Monthly survey of about 50,000 households conducted by the Bureau of the Census for the Bureau of Labor Statistics (data file). http://www.bls.census.gov/cps/cpsmain.htm.
- Current Population Survey (CPS) (2000). Monthly survey of about 50,000 households conducted by the Bureau of the Census for the Bureau of Labor Statistics (data file). http://www.bls.census.gov/cps/cpsmain.htm.
- Flinn, C. J., & Heckman, J. J. (1983). Are unemployment and out of the labor force behaviorally distinct labor force states? *Journal of Labor Economics*, *1*, 28–42.
- Goldsmith, A. H., Veum, J. R., & Darity, W. (1995). Are being unemployed and being out of the labor force distinct states?: A psychological approach. *Journal of Economic Psychology*, *16*, 275–295.
- Gonul, F. (1992). New evidence on whether unemployment and out of the labor force are distinct states. *Journal of Human Resources*, 27, 329–361.
- Jones, S. R. G. & Riddell, W. C. (1999). The measurement of unemployment: An empirical approach. *Econometrica*, 67, 147–162.
- Jones, S. R. G., & Riddell, W. C. (2006). Unemployment and non-employment: heterogeneities in labor market states. *Review of Economics & Statistics*, 88, 314–323.
- Juhn C., Murphy, K. M., & Topel, R. H. Commenters: Katz, L. F., & Shimer, R. (2002). Current unemployment, historically contemplated. *Brookings Papers on Economic Activity, (1),* 79–136.
- Juhn C., Murphy, K. M., & Topel, R. H. Commenters: Yellen, J. L., & Baily, M. N. (1991). Why has the natural rate of unemployment increased over time? *Brookings Papers on Economic Activity*, (2), 75–142.
- Kroft, K., & Pope, D. G. (2014). Does online search crowd out traditional search and improve matching efficiency? Evidence from Craigslist. *Journal of Labor Economics*, *32*, 259–303.
- Kuhn, P., & Skuterud, M. (2000). Job search methods: Internet versus traditional. *Monthly Labor Review*, *123*, 3–11.
- Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables (Advanced Quantitative Techniques in the Social Sciences series: Book #7). Thousand Oaks, CA: SAGE Publications.

Madrian, B. C., & Lefgren, L. J. (2000). An approach to longitudinally matching Current Population Survey (CPS) respondents. *Journal of Economic & Social Measurement*, 26, 31–62.

- Millimet, D. L., Nieswiadomy, M., Ryu, H., & Slottje, D. (2003). Estimating worklife expectancy: An econometric approach. *Journal of Econometrics*, 113, 83–113.
- Murphy, K., & Topel, R. (1997). Unemployment and nonemployment. *American Economic Review*, 87, 295–300.
- Poterba, J. M., & Summers, L. H. (1995). Unemployment benefits and labor market transitions: A multinomial logit model with errors in classification. *Review of Economics & Statistics*, 77, 207– 216.
- Tano, D. K. (1991). Are unemployment and out of the labor force behaviorally distinct labor force states?: New evidence from the gross change data. *Economics Letters*, *36*, 113–117.

APPENDICES A-Q Supplement Containing Appendices A through Q

Appendix A – Multinomial Probit Regression Results (1990)

White Males, 25-44

White Females, 25-44

Multinomial pro Log likelihood				Wald	r of obs = chi2(26) = > chi2 =	20925 1046.95 0.0000	Multinomial probit regression Log likelihood = -14593.86				Numbe Wald Prob	22216 1589.01 0.0000	
ooprobit	Coef.	Std. Err.	2	P> z	[95% Conf.	Interval]	ooprobit	Coef.	Std. Err.	z	P> 2	[95% Conf.	Interval]
1	(base outco	ome)					1	(base outco	ome)				
2							2		0.000		100 CO.		in the second second
exp	.0913505	.0194934	4.69	0.000	.0531441	,1295569	екр	.001448	.0185259	0.08	0.938	0348621	.0377582
exp2	0032531	.0005608	-5.80	0.000	0043522	002154	exp2	0000416	.0005341	-0.08	0.938	0010885	.0010053
northeas	.0326038	.0768183	0.42	0.671	1179573	.1831648	northeas	0344346	.064899	-0.53	0.596	1616342	.0927651
midwest	.196786	.080459	2.45	0.014	.0390892	.3544828	midwest	.1279147	.0671749	1.90	0.057	0037456	.259575
south	271064	.0723921	-3.74	0.000	4129499	1291782	south	0496811	.0607364	-0.82	0.413	1687222	.06936
educ19	1237066	.1173994	-1.05	0.292	3538052	.106392	educ19	2960374	.1045528	-2.83	0.005	5009571	0911177
educ9 11	0855629	.0875482	-0.98	0.328	2571542	.0860283	educ9 11	0999715	.0780356	-1.28	0,200	2529184	.0529755
educ13 15	-,1890572	.0766683	-2.47	0.014	3393244	03879	educ13 15	0046254	.0596274	-0.08	0.938	121493	.1122422
educ16p	256748	.0808548	-3.18	0.001	4152205	0982755	educ16p	1163589	.0715623	-1.63	0.104	2566184	.0239006
married	.2629692	.0991339	2.65	0.008	.0686703	.457268	married	7380887	.0502487	-14.69	0.000	8365745	-,639603
msa3mm	-,1969036	.0822472	-2.39	0.017	3581051	0357021	msa3mm	3228123	.0701464	-4.60	0,000	-,4602967	1853279
cy1990	-,0035881	.0295022	-0.12	0,903	0614113	.0542352	cy1990	.0057514	.0248205	0.23	0.817	0428959	.0543988
marriedsped	0033415	.0077701	-0.43	0,667	0185705	0118876	marriedsped	.0185034	.0080527	2.30	0.022	.0027204	.0342864
_cons	4461407	.2374887	-1.88	0.060	9116101	.0193286	_cons	7469428	.2124517	-3.52	0.000	-1.163341	330545
3				0.0000000000000000000000000000000000000			3						
exp	.1052793	.0142955	7.36	0.000	.0772607	.1332978	exp	0286313	.0105152	-2.72	0.006	0492408	0080218
exp2	0034289	.000408	-8.40	0.000	0042285	0026293	exp2	.0012696	.0003075	4.13	0.000	.0006669	.0018723
northeas	-,0037413	.0612379	-0.06	0.951	1237652	.1162827	northeas	0643317	.0373023	-1.72	0.085	1374428	.0087794
midwest	,1552111	.0659893	2.35	0.019	.0258744	.2845477	midwest	.1780557	.0389626	4.57	0.000	.1016905	.2544209
south	.0171676	.0553425	0.31	0.756	0913016	.1256369	south	,1233168	.0342823	3.60	0.000	.0561247	,190509
educ19	518417	.0922688	-5.62	0.000	6992605	3375735	educ19	-1,196463	.0671679	-17.81	0.000	-1,328109	-1,064816
educ9 11	6107278	.0718481	-8.50	0.000	7515476	469908	educ9 11	6904669	.0504181	-13,69	0.000	7892846	5916493
educ13 15	.0998767	.0604934	1.65	0.099	0186882	.2184416	educ13 15	.1965647	.0341558	5.75	0.000	.1296205	.2635088
educ16p	.2820206	.0628868	4.48	0.000	.1587647	.4052766	educ16p	.5556948	.0370421	15.00	0.000	.4830937	.6282959
married	.5313644	.0794297	6.69	0.000	.375685	.6870437	married	6372454	.0312734	-20.38	0.000	6985401	5759507
msa3mm	.0416632	.0633858	0.66	0.511	0825706	.165897	msa3mm	2895394	.0391032	-7.40	0.000	3661803	2128985
cy1990	1192238	.0235352	-5.07	0.000	165352	0730956	cv1990	0719936	.0141303	-5.09	0.000	0996886	0442987
marriedsped	.0238188	.0061813	3.85	0.000	.0117036	.035934	-						
COLOR DE COL				1.142.2014.001.002			marriedsped	.0142076	.0045209	3.14	0.002	.0053468	.0230683
CODS	1.808363	.1832559	9.87	0.000	1.449188	2,167538	_cons	1.781585	.1205513	14.78	0.000	1.545309	2.017861

Black Males, 25-44

Black Females, 25-44

Multinomial pr Log likelihood	10000 000000000			Wald	r of obs = chi2(26) = > chi2 =	1950 246.93 0.0000
ooprobit	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
1	(base outco	ome)				
2						
exp	0395094	.0546718	-0.72	0.470	-,1466641	.0676453
exp2	.0004671	.0015209	0.31	0.759	0025139	.003448
northeas	.2609537	.2420424	1.08	0.281	-,2134407	.7353482
midwest	.2622987	,2489495	1.05	0.292	2256333	.7502306
south	.2729894	.2032198	1.34	0.179	-,1253141	.6712929
educ19	1669255	.3061979	-0.55	0.586	7670623	.4332113
educ9 11	3722098	.1839863	-2.02	0.043	7328164	0116032
educ13 15	.4706307	.1918164	2.45	0.014	.0946774	.8465839
educ16p	4421882	2954638	-1.50	0.134	-1.021287	,1369101
married	.5687073	,2189686	2.60	0.009	.1395368	.9978775
msa3mm	2762466	.1883383	-1.47	0.142	6453828	.0928897
cy1990	0501717	.0789665	-0.64	0.525	2049432	.1045999
marriedsped	0182973	.0191873	~0.95	0.340	0559037	.0193091
_cons	.3545039	.656402	0.54	0.589	9320204	1.641028
3						
exp	.0473616	.0452837	1.05	0,296	0413929	.1361161
exp2	-,0017166	.0012684	-1.35	0.176	0042027	.0007694
northeas	.4153117	.1927024	2.16	0.031	.037622	.7930014
midwest	.2635543	,2009142	1.31	0.190	1302303	.6573389
south	.4374867	.1618724	2.70	0.007	.1202226	.7547508
educ19	-1.087842	.2622239	-4.15	0.000	-1.601792	5738927
educ9 11	8193064	.1489505	-5.50	0.000	-1.111244	5273681
educ13 15	.6184224	1629854	3.79	0.000	.2989769	.9378679
educ16p	.7947964	.2034495	3.91	0.000	.3960426	1.19355
married	.6421731	.185839	3.46	0.001	.2779353	1.006411
msa3mm	4267998	.1508343	-2.83	0.005	7224295	1311
cv1990	2785317	.064258	-4.33	0.000	4044751	1525883
marriedsped	.021231	.0159895	1.33	0.184	0101077	.0525698
cons	2.350077	.5390227	4.36	0.000	1.293612	3.406542

Multinomial pr Log likelihood				Wald	r of obs = chi2(26) = > chi2 =	2771 408.25 0.0000
ooprobit	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
1	{base outco	ome)				
2						
exp	0267154	.0496628	-0.54	0.591	-,1240527	.0706218
exp2	.0005025	.0014578	0.34	0.730	0023548	.0033597
northeas	.0446399	.194179	0.23	0.818	335944	4252239
midwest	.4657003	.1926502	2.42	0.016	.0881129	8432877
south	.3469106	.1592519	2.18	0.029	.0347825	6590386
educ19	-1.194706	.3754648	-3.18	0.001	-1.930604	4588085
educ9 11	-,3208635	.1439541	-2.23	0.026	6030084	0387187
educ13 15	.0531797	.1395459	0.38	0.703	2203252	.3266846
educ16p	.2341459	.2215867	1.06	0.291	2001562	. 6684479
married	2048793	.1213563	-1.69	0.091	4427332	.0329746
msa3mm	1851876	,1470562	-1.26	0.208	4734125	.1030373
cy1990	0930274	.0583594	-1.59	0.111	2074097	.0213549
marriedsped	.0278396	0192295	1.45	0.148	0098496	.0655288
_cons	1308193	,5322367	-0.25	0.806	-1.173984	.9123454
3						
exp	0140113	.0336326	-0.42	0.677	07993	.0519074
exp2	.0015251	.0009762	1.56	0.118	0003883	.0034385
northeas	.1562782	.1301541	1.20	0.230	0988191	.4113756
midweat	.0907999	.1437606	0.63	0.528	1909657	.3725655
south	.4550702	,1113334	4.09	0.000	.2368607	. 673279
educ19	-1.850159	.2331734	-7.93	0.000	-2.307171	-1.39314
educ9 11	-1.175105	.1132147	-10.38	0.000	-1.397002	-,953208
educ13 15	.5252741	.0980799	5.36	0.000	.3330411	.717507:
educ16p	1.408539	.1478633	9.53	0.000	1.118732	1.69834
married	.0121928	.0841517	0.14	0.885	1527416	.177127:
msa3mm	1146051	.1044101	-1.10	0.272	3192451	.090034
cy1990	1952827	.0432808	-4.51	0.000	2801115	110453
marriedsped	.025031	.0138072	1.81	0.070	0020307	.052092
cons	1,425317	.376054	3.79	0.000	.6882644	2.16236

Hispanic Males, 25-44

Multinomial pr Log likelihood				Wald	chi2(26) = > chi2 =	2838 146.95 0.0000
ooprobit	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
1	(base outco	ome)				
2			× 20-	20-07-000000 20-00000		
exp	0036188	.0472386	-0.08	0.939	0962048	.0889672
exp2	0002111	.0011635	-0.18	0.856	0024916	.0020693
northeas	5691467	.1960855	-2.90	0.004	9534672	1848263
midwest	.4408463	.3302452	1.33	0.182	2064224	1.088115
south	.0105699	.1733294	0.06	0.951	3291495	.3502893
educ19	045373	.1922166	-0.24	0.813	4221107	.3313647
educ9 11	.0430373	.1971242	0.22	0.827	3433189	. 4293930
educ13 15	.0272207	.2499579	0.11	0.913	4626877	.5171291
educ16p	1371927	.2730446	-0.50	0.615	6723503	.3979649
married	.2209483	.1800915	1.23	0.220	1320246	.5739212
msa3mm	0828724	.1522251	-0.54	0.586	3812281	.2154833
cy1990	0401048	.148983	-0.27	0.788	3321062	.2518966
marriedsped	-,0017083	.0166008	-0.10	0.918	0342453	.0308287
_cons	.3651.281	.9868798	0.37	0.711	-1.569121	2,299377
3						
exp	0099603	.0373073	-0.27	0.789	0830813	.0631608
exp2	0001184	.0009192	-0.13	0.897	00192	.0016831
northeas	621085	.1493843	-4.16	0.000	9138729	3282971
midwest	.5186762	.286588	1.81	0.070	0430259	1.080378
south	.0809447	.1423727	0.57	0.570	1981007	.3599902
educ19	1462251	.1550474	-0.94	0.346	4501124	.1576621
educ9 11	1353949	.1620694	-0.84	0.403	453045	,1822553
educ13 15	.6761262	.1978021	3.42	0.001	.2884411	1,063811
educ16p	.353092	.2094983	1.69	0.092	0575171	.7637011
married	.5429668	.1459466	3.72	0.000	.2569167	.8290169
msa3mm	.1529052	.120866	1.27	0.206	0839878	.3897982
cy1990	274924	,1252116	-2.20	0.028	-,5203343	0295138
marriedsped	.0308045	.0132902	2.32	0.020	.0047562	.0568528
cons	3.357235	.8221242	4.08	0.000	1.745901	4,968569

Hispanic Females, 25-44

Multinomial pr				Wald	r of obs = chi2(26) =	3216 352.15
Log likelihood	= -2469.7695	ŝ		Prob	> chi2 =	0.0000
ooprobit	Coef.	Std. Err.	z	P> 2	[95% Conf.	Interval]
1	(base outco	(and				
2						
exp	0370805	.0364613	-1.02	0.309	1085434	.0343823
exp2	.0009409	.0009226	1.02	0.308	0008673	.002749:
northeas	301429	.1537221	-1.96	0.050	6027188	0001393
midwest	.3372254	.2444224	1.38	0.168	1418338	.8162846
south	.1784415	.134127	1.33	0.183	0844426	.441325
educ19	192788	.1565229	-1.23	0.218	4995671	.113991
educ9 11	0753692	.1564578	-0.48	0,630	3820208	.231282
educ13 15	.2161487	.1614462	1.34	0.181	1002801	.532577
educ16p	0292173	.2534622	-0.12	0.908	5259942	.467559
married	5445698	.1118453	-4.87	0.000	7637825	325357
maa 3mm	3923476	.1249595	-3.14	0.002	6372637	147431
cv1990	1400005	.1040258	-1.43	0.153	3526953	.055078
marriedaped	.0293061	.0179997	1.63	0.103	0059726	.064584
_cons	.3249856	.6851029	0.47	0.635	-1.017791	1.66776
3						
exp	.0271901	.0234448	1.16	0.246	0187609	.073141
exp2	000312	.0006057	-0.52	0.606	0014991	.000875
northeas	5457279	.0963048	-5.67	0.000	7344818	35697
midwest	.3111188	.1542455	2.02	0.044	.0088032	.613434
south	.0262063	.0870667	0.30	0.763	1444412	,196853
educ19	8797262	.0993467	-8.86	0.000	-1.074442	685010
educ9 11	5843986	.1022135	-5.72	0.000	7847334	384063
educ13 15	.3969296	.1019616	3.89	0.000	.1970886	.596770
educ16p	.954249	.1334546	7.15	0.000	. 6926829	1.21581
married	3955949	.0728143	-5.43	0.000	5383082	-,252881
msa3mm	2301428	.0758732	-3.03	0.002	3788515	08143
cy1990	0603746	.0708603	-0.85	0.394	1992582	.07850
marriedsped	.0095478	.011917	0.80	0.423	013809	.032904
cons	.9870457	.4586686	2.15	0.031	.0880718	1.8860

White Males, 16-19

	kultinomial probit regression .og likelihood = -1083.7262					Number of obs = Wald chi2(14) = 11 Prob > chi2 = 0.				
ooprobit	coer.	Std. Err.	z	P> z	[95%	Conf.	Interval)			
1	(base outco	omel								
2										
exp exp2 northeas midwest south mea3mm	.0252272 .2894576 2134164 1569739 1813133 8655826	.3057577 .1459516 .2031175 .2099027 .1884465 .2377816	0.08 1.90 -1.05 -0.75 -0.96 -3.64	0.934 0.047 0.293 0.455 0.336 0.000	5740 .0033 6115 5683 5506 -1.331	979 194 756 617	.6245012 .5755175 .1846865 .2544276 .188035			
dyl090 _cons	.0522545 -1.431801	.0779416 .4591887	0.67	0.502	1003: -2.331		.2049211 5318081			
3					and the second	and the second				
exp exp2 northeas midweat south msa3mm cy1990 cons	.1551927 .2592672 1312565 .0604193 1462006 6613437 0942413 .6367679	.2174062 .1073464 .1466847 .1509396 .1412201 .1540447 .0564573 .330581	0.71 2.42 -0.89 0.40 -1.04 -4.29 -1.67 1.93	0.475 0.016 0.371 0.689 0.301 0.000 0.095 0.054	-,2710 .048 -,4187 -,2354 -,4229 -,9632 -,2048 -,011	872 533 168 987 657 955	.5014570 .4696623 .1562402 .3562554 .1305975 3594217 .016413			

Black Males, 16-19

Multinomial pr	obit regress:	ion			r of cha		160
					ch12(14)		23.57
Log likelihood	= -150.8587:	2		Prob	> ch12	7	0.0516
sopeshit.	Goof.	std. Kre.	*	₽> (a	(959)	conf.	Interval]
1	(basa outo	ome)					
2	100000000000000000000000000000000000000		2010/2017-04	\$17(3):52555	100.014	unamere.	N 1919 1919 1919
exp	.8029153	.8233135	0.98	0.329	810		2.41658
exp2	0881915	.3688292	-0.24	0.811	8110		.6347003
northeas	.4733378	.6513559	D.73	0.467	803		1.749973
midwest	1.044364	.65386	1.50	0.110	23		2.32594 0
south	2169635	.5773898	-D.38	0.707	-1.34		.9146991
mse3mm	5432678	.5000485	-1.09	0.277	-1.52		.4367893
cy1990	2769862	.1917535	-1.44	0.140	6521	8161	.0988431
_cons	.0606665	1.170903	0.05	0,959	-2.23	1262	2.355595
3	5-9	New New York					
exp	1.551694	.7177948	2.16	0.031	.144		2.958546
exp2	3728972	.3190308	-1.17	0.242	998		.252391
northeas	1251475	.580759	-0.22	0.829	-1.26		1.01311
midwest	.8637662	.5668174	1.56	0.119	-,227		1.9947
south	-,2534594	.4918329	-0,52	0.605	-1.21		.710515
ma a 3mn	5365418	.44843	-1.20	0.232	-1.41		.342364
cy1990	3157009	.1602512	-1.97	0.049	629		001614
cona	.7939601	.9781545	0.81	0.417	-1.12	9199	2.711106

White Females, 16-19

	ultinomial probit regression og likelihood = -1072.2335					-	1265 47.42 0.0000
ooprobit	Coef.	Std. Err.	z	E>(Z)	[958 0	cont.	Interval]
1	base outc	ome)					
2							
exp	.1607968	3196557	0.50	0.615	46573	68	.7873104
exp2	.111561	.1531296	0.73	0.466	18854	176	.4117095
northeas	3917561	2194319	-1.79	0.074	82183	948	.0383226
midwest	.001284	.2080552	0.01	0.995	40645	066	.409064
south	4733548	.1986448	-2.38	0.017	86265	014	0840183
mm a 3 mm	196279	.2245628	-0.87	0.382	636	114	.243056
cy1990	.0335672	.0795708	0.42	0.673	1223	386	.189523
_cons	-1.362102	.4736603	-2.88	0.004	-2.290	459	4337446
3			- 200				
exp	3264918	.2170952	-1.50	0.133	7519	907	.09900
osp2	. 3272249	.1076164	3.04	0,002	.1163	007	.53814
northeas	1761553	.1477411	-1.19	0.233	4657	224	.113411
nidwest	.1298082	.1495514	0.87	0.385	1633	072	.422923
south	2629341	.1350552	-1.95	0.052	5276	375	.001769
mea.3mn	2510069	.156727	-1.60	0.109	5581		.056172
Cy1990	0300449	.0546208	-0.55	0.582	1370		.077009
cons	.5839619	.3225282	1.81	0.070	0481	818	1.21610

Black Females, 16-19

	Multinomial probit regression Log likelihood = -190.01864					Number of obs = Nald chi2(14) = Prob > chi2 =				
4	oprobit	coaf,	std. Err.	a	P>(#)	[954 Conf.	Interval			
1.		(base outo	me)							
2		Press Constant and Constant	1997 March 1997	20.0220203	40	ADDER ALARPEA	10000000000000			
51	exp	1.030423	.7747892	1.33	0.194	4881361	2.548982			
	exp2	1990344	.3411266	-0.58	0.550	8676302	.4695613			
	ortheas	-1.325095	.6337031	-2.09	0.037	-2.567131	0830608			
	nidwest	4000177	. 6065995	-0.66	0.510	-1.588931	.7888956			
	south	6116653	.4363134	-1.40	0.161	-1.466824	.2434934			
	msa3mm	.3598054	.4790664	0.75	0.453	5791474	1.298758			
	oy1990	.0367278	.1978297	0.19	0.853	3510112	.4244669			
	_cons	-1.684336	1.202845	-1.40	0.161	-4.04187	.6731971			
3										
	exp	.0562844	.5529718	0.10	0.920	-1.04712	1.159685			
	exp2	.1799534	.2640581	0.68	0.496	337591	.6974977			
1	northeas	6123534	.4456082	-1.37	0.169	-1.48573	.2610226			
	midvest	3985638	.5301464	-0.75	0.452	-1.437632	.6405043			
	south	378665	.3550538	-1.07	0.286	-1,074558	.3172277			
	mgaJnm	3069402	.3075741	-0.79	0.429	-1.056768	.4528871			
	cy1990	.0081158	.1492517	0.05	0.957	2844122	.3006438			
	cons	3572723	.8957426	-0.40	0.690	-2.114856	1.400311			

Hispanic Males, 16-19

Multinomial pr Log likelihood			Number of obs - Wald ch12(14) = Prob > ch12 = 0				
coprobit	Coef.	Std. Err.	2	P> 2	[95%	Cont.	Interval)
L	base outco	ome)					
2							
exp	.7204071	.8685031	0.83	0.407	981	8278	2.42264
osp2	.0194873	.3800644	0.05	0.959	725	1253	.764399
northeas	6998928	.4887731	-1.43	0.152	-1.6	5787	.258084
midwest	.758564	.7540458	1.01	0.314	719		2.23646
south	.0911444	.4422766	0.21	0.837	775		.957990
msa3mm	7101403	.3692157	-1.92	0.054	-1.4		.013509
cy1990	3231992	.3620842	-0.89	0.372	-1.03		.386472
_cons	.5437913	2.073614	0.26	0,793	-3.52	0417	4.60
3							
exp	1.417463	.6612998	2.14	0.032	.121	3395	2.71358
exp2	3633875	.2931828	-1.24	0.215	938	0152	.211240
northeas	9254427	.3912417	-2.37	0.010	-1.69	2262	150623
midwest.	.8895193	.6357467	1.40	0.162	356		2.1355
south	.0600018	.3679222	0.16	0.870	661		,781116
msa3mm	5335542	.2919617	-1.83	0.068	-1,10		.038680
cy1990	3268496	.3044051	-1.07	0.283	~.923		.269773
cons	1.459623	1.741836	0.84	0.402	-1.95	4312	4,97355

Hispanic Females, 16-19

	ultinomial probit regression og litelibood = -175.25578					Number of obs = Wald chi2(0) - Prob > chi2 =				
ooprobit	Coef,	Std. Err.	2	P> z	[954	Conf.	0.4528 Interval]			
1	(bass outo	omo)	1	553036-5	1608-262		1			
2 exp west midwest south _cons	.2172353 .2665137 -10.13337 0827884 -1.719009	.2445332 .523497 2.67e+09 .5935448 .5306305	0.89 0.51 -0.00 -0.14 -3.24	0.374 0.611 1.000 0.889 0.001	26 759 -5.23 -1.24 -2.75	5217 5+09 6115	.6965116 1.292549 5.23e+09 1.080538 679057			
3 exp west midwast south _cons	.4063709 .0772924 =.0439122 1770335 4489209	.1620122 .3497966 .6124881 .3889926 .3492045	2.51 0.22 -0.07 -0.46 -1.29	0.012 0.825 0.943 0.649 0.199	.088 608 -1.24 939 -1.13	2962 4367 4449	.7239089 .7628811 1.156542 .5853779 .2355073			

Appendix B – Multinomial Probit Regression Results (2000)

White Males, 25-44

White Females, 25-44

Multinonial pr Log likelihood	e encontrace		Number of obs = Wald chi2(26) = 7 Prob > chi2 = 0				
ocprobit	Coef.	Std. Err.	2	P> Z	[95% Conf.	Interval]	
1	{base outc	ome }					
2		100 × 200 00 × 100 270	04 2349				
exp	.0391435	.0239119	1.64	0.102	007723	.08601	
exp2	0016658	.0006705	-2.48	0.013	0029799	0003516	
northeas	2947718	.1000854	-2.95	0.003	4909356	0986079	
nidwest	.0104751	.1023313	0.10	0.918	1900906	.2110407	
south	2339433	.0872332	-2.68	0.007	4049172	0629694	
educ19	.6226044	,2686402	2.32	0.020	.0960793	1.14913	
educ9 11	.5657556	.2555702	2.21	0.027	.0648472	1.06666	
educ13 15	.510648	.2438523	2.09	0.036	.0327064	.968589	
educ16p	4195074	.2554031	1.64	0.100	0810734	9200883	
narried	.3241011	.087753	3.69	0.000	.1521084	496093	
marriedsped	0015054	.0024271	-0.62	0.535	0062624	.003251	
msa5mm	1060309	.1022456	-1.04	0.300	3064286	.094366	
cy2000	.0962142	.0445844	2.16	0.031	.0088304	183598	
_cons	-1.389139	.3780844	-3.67	0.000	-2.130171	648107	
3	a	00000000	12. 12.1	-0000444	0000000000	e contrare	
ехр	.0300050	.0163876	2.44	0.015	.0078768	.07211	
exp2	0018036	.0004591	-3.93	6.000	0027035	000903	
northeas	196753	.0700204	-2.81	0.005	3339905	059515	
midwest	.0509133	.0740286	0.69	0.492	0941802	.196006	
south	0512636	.0625987	-0.92	0.413	1739548	.071427	
educ19	.281097	.1750536	1.61	0.108	0620017	.624195	
educ9 11	0130469	.1645125	-0.08	0.337	3354856	.309391	
cduc13 15	.5445466	.1534033	3.55	0.000	.2438816	.845211	
educ16p	.9281723	.1613415	5.75	0.000	.6119488	1.24439	
married	.7787072	.063585	12.25	0.000	.6540829	.903331	
marriedsped	.0031523	.0017428	1.81	0.070	0002635	.00656	
ms a 5 mm	.0917181	.0722937	1.27	0.205	049975	.233411	
CY2000	0900786	.0314773	-2.86	0.004	151773	028384	
CONS	1,463765	.2531452	5.78	0.000	.9675095	1,95992	

Multinomial pr	anter anterario			Wald	<pre>er of obs = chi2(26) = > chi2 =</pre>	17040 1198.08 0.0000
ooprobit	Coef.	Std. Err.	z	P> 1	[95% Conf.	Interval
1	(base outco	ome)				
2						1.121017
exp	.0295451	.0220605	1.34	0.179	0135928	.072882
exp2	0007	.000625	-1.12	0.263	001925	.000524
northeas	.0978504	.0862863	1.13	0.257	0712676	.266968
midweat	.1305168	.0923354	1.50	0.134	0424572	.3194901
south	.0029568	.0784378	0.04	0.970	1507784	.15669
educ19	.2113048	.3031055	0.70	0.486	382771	.805360
educ9 11	.3522066	.2959322	1.19	0.234	2278099	.93222
educ13 15	.329402	.2869116	1.15	0.251	2329344	.891738
educ16p	.274411	.2934111	0.94	0.350	3006641	.849486
married	691639	.0629327	-10,99	0.000	8149848	568293
marriedsped	001592	.002017	-0.79	0.430	0055452	.002361
msa5mn	-,1219723	.0866544	-1.41	0.159	2918118	.047867
CV2000	.0594863	0400466	1.49	0.137	0190036	137976
_cons	-1.729089	.3911682	-4.42	0.000	-2,495765	962413
3						
exp	0377832	.0118935	-3.18	0.001	0610941	014472
exp2	.0014609	.0003461	4.22	0.000	.0007826	.002139
norcheas	.0129139	.0477263	0.27	0.787	080628	.106455
midwest	.1947745	.0494937	3.94	0.000	.0977686	.291780
south	.085646	.0426714	2.01	0.045	.0020117	.169280
educl.9	7819356	.1639028	-4.77	0.000	-1.103179	46069
educ9_11	4935232	.158462	-3.11	0.002	8041031	182943
educ13_15	.396199	.1498437	2.64	0.008	.1025107	.689887
aduclfp	.8193656	.1523936	5.39	0.000	.5206797	1.11805
married	5977844	.0367216	-16.29	0.000	6697574	525811
marriedsped	0021896	.0009914	-2.21	0.027	0041326	000246
msa5mn	1382317	.0491495	-2.81	0,005	2345628	041900
CY2000	0763541	.0214924	-3.55	0.000	1184786	034229
cons	1.504066	.2049696	7.34	0.000	1,102333	1,90579

Black Males, 25-44

Nultinomial pr				Wald	r of obs - chi2(26) = > chi2 =	1679 148.25 0.0000	
coprobit	Coef.	Std. Brr.	z	₽> z	[95% Conf.	Interval]	
1	(base outc	ome)					
2							
exp	.0152281	.0683939	0.22	0.824	1188214	.1492777	
exp2	0015785	.0020012	-0.79	0.430	0055008	.0023438	
northeas	1987407	.3152063	-0.63	0.528	8165336	.4190522	
nidwest	0571077	.3192525	-0.18	0.858	6828311	.5686151	
south	1859022	.2855176	-0.65	0.515	7455065	. 3737021	
educ19	6154679	.6269635	-0.98	0.326	-1.844294	.6133579	
oduo5 11	741232	.4976455	-1.49	0.136	-1.716599	.2341353	
edac13 15	2880272	.4538566	-0.63	0.526	-1.17757	.6015153	
educ16p	4727513	4987929	-0.95	0.343	-1.450367	.5048641	
married	.058768	,2213922	0.31	0.756	3651528	.502688	
CV2000	.0993202	.1072329	0.93	0.354	-,1108524	.3094921	
marriedsped	0009474	.0068786	-0.14	0.890	0144293	.012534	
msa5mm	.1391318	,2413055	0.58	0.564	3338182	.612081	
cons	2053116	.8715894	-0.24	0.814	-1.913595	1.502972	
3			1922-003		000000000	102070044	
exp	.0571075	.0490237	1.16	0.244	0389771	.153192:	
exp2	0025896	.001406	-1.84	0.065	0053453	.00016	
northeas	3929276	.2364311	-1.66	0.097	8563241	.07046	
midwost	3565301	.2409331	-1.48	0.139	8287504	.115690	
south	.1429865	.2146536	0.67	0.505	2777463	.563719	
educ19	146167	.4864878	-0.30	0.761	-1.101666	.805331	
educ9 11	2215441	.4015724	-0.55	0.501	-1.008612	.565523	
educ13 15	.710200	.3746907	1.92	0.055	0160923	1.45266	
educ16p	,9320155	.401534	2.32	0.020	.1450234	1.71900	
married	.5909052	.155819	3.79	0.000	.2855066	,896305	
cy2000	-,1690065	.0761451	-2.22	0.026	3182482	019764	
narriedsped	.0044129	.0047038	0.94	0.348	0048063	.013632	
m s a Smm	.4318605	.181171	2.38	0.017	.0767718	.786949	
cons	1.223237	.6646687	1.84	0,066	0794896	2.52596	

Black Females, 25-44

Multinomial pr Log likelihood				Wald	r ef obs = chi2(26) = > chi2 =	2260 187.05 0.0000
ooprobit	Coef.	Std. Erz.	1	₽> ±	(95% Conf.	Interval]
1	(base outer	ane)				
2						(and)
exp	0175283	.0569998	-0.31	0.758	1292458	.0941892
емр2	.0002811	.0016543	0.17	0.865	0029614	.0035235
northeas	.6424075	.3027222	2.12	0.034	.0490831	1,235732
nidwest	. 471432	.3133987	1.50	0.133	1428181	1.085682
south	.5105915	.2895073	1.76	0.078	0569324	1.078015
educ19	5707451	.6925856	-0.82	0.410	-1,929188	.7866979
educ9 11	.5591643	. 424941	1.32	0.100	2735848	1.392053
educ13 15	,7257777	.401893	1.81	0.071	0619182	1.513474
educ16p	.7511028	.4466855	1.58	0.093	1243848	1.62659
married	~.3559299	.1666269	-2.14	0.033	5825126	0293471
marriedsped	.000172	.0063582	0.03	0.978	0122899	.0126339
nsa5mn	1132597	.2016029	-0.56	0.574	5083941	.2818746
cy2000	.0211315	.0889082	0.24	0.812	1531254	.1953884
CODB	-1.76829	.7615903	-2.32	0.020	-3.261176	2754041
3						
скр	.0219094	.0373688	0.59	0.558	0513321	.095151
exp2	0010084	.0010827	-0.93	0.352	0031305	.0011137
northeas	.2049742	.1802552	1.14	0.255	1483194	.5582678
midvest	.2203361	.185396	1.19	0.235	1430334	.583705
south	.4601279	.1672301	2.75	0.006	.1323629	.7878929
educ19	.1744257	.3850069	0.45	0.651	580174	.9290253
educ9_11	.3078095	.2884901	1.07	0.286	2576208	.873239
edun13_15	1.311002	.2671402	4.91	0.000	.7874169	1.83458
educ16p	1.951985	.2911481	6.70	0.000	1.381345	2.52262
morried	0920294	.1047009	-0.88	0.380	2973962	,1133374
marriedsped	.0013228	.0038001	0.35	0.728	0061251	.0087708
nsaban.	0007919	.1347707	-0.01	0.995	2649376	,2633535
cy2000	1374253	.0588689	-2.33	0.020	2528063	0220444
cons	.1513832	.5012847	0.30	0.753	8311168	1.133883

Hispanic Males, 25-44

Hispanic Females, 25-44

Multinomial pr Log likelihoed	and are			Mald	r of obs - chi2(26) - > chi2 =	3039 141.66 0.0060	
ooprobit	Coef.	Std. Err.	3	PSizi	195% Conf.	Intervall	
1	(base outco	ome)					
2	141144 (1992-5		2011-2	59 (ANN)	P29-078		
exp	.0060408	.0436516	0.14	0.890	0795148	.0915965	
exp2	0005504	.0011031	-0.50	0.618	0027124	.0016116	
northeas	2541495	.1921285	-1.32	0.185	6307145	,1224155	
nidwest	1740582	.2426915	-0.72	0.473	6497247	,3016084	
south	1809343	.1607507	-1.13	0.260	4959999	.1341314	
educ19	.7848775	.3837938	2.05	0.041	.0326556	1.537099	
educ9 11	.938793	.381218	2.46	0.014	.1916194	1.685967	
educ13 15	.4621257	.3671083	1.26	0.208	2573934	1,181645	
educ16p	.760228	.4312906	1.76	0.078	-,085086	1.605542	
married	.2144429	.1622905	1.32	0.186	1036407	.5325265	
marriedsped	.001761	.0045809	0.38	0.701	0072173	.0107394	
msa5nm	1486186	1638942	-0.91	0.365	- 4598453	.1726083	
cv2000	.0274268	1085351	0.25	0.800	1852961	.240153	
_cons	8626537	.7220517	-1.19	0.232	-2.277849	.552541	
3							
exp	0246018	.0318942	-0.77	0.440	0971133	.037909	
exp2	0000956	.0008107	-0.12	0.906	0016845	.001493	
northeas	363772	.1428028	-2.55	0.011	6436603	083883	
midwest	.0082671	.1788585	0.05	0.963	3422893	.358823	
south	.0313751	.1212513	0.26	0.796	2062731	.269023	
educ19	.3932108	.2465826	1.59	0.111	0900822	.876503	
educ9 11	.3397169	.2469814	1,38	0.169	-,1443578	.823791	
educ13_15	.4303656	.2283381	1.88	0.059	0171689	.877	
educifp	.0575696	. 2073763	2.90	0.003	. 2943225	1.42081	
married	.8026032	.120782	6.65	0.000	,5659747	1.03933	
marriedsped	.0000821	.0034271	0.02	0.981	-,0066349	.006799	
nsa5nm	.0437084	.1221041	0.36	0.720	1956114	.283028	
cy2000	0007079	.0826059	-0.01	0.993	1626124	.161196	
cons	1.735726	. 5213653	3.33	0.001	.7138691	2.75758	

396 309.9		r of obs			.on	obit regressi	Multinomial pr
0.000	-	> chi2			•	= -2973.2785	Log likelihood
Interval	Conf.	1958	8>1×1		Std Krr.	Coef.	osprobit
1000 000					(emc	(base outco	1
							2
.102118	022	0344	0.331	0.97	.0348273	.0338581	exp
.000957	956	-,0025	0.366	-0.90	.0009065	0008189	exp2
.660874		.0786	0.013	2.49	.1485419	.3697374	northeas
.633298		1389	0.210	1.25	.1969934	.2471986	midwest
.29180	3298	2363	0.837	0.21	.1347313	.0277386	south
1,12214	7083	5397	0.492	0.69	.4239499	.2912183	educ19
1,26531	727	3800	0.292	1.05	.4197486	.4426195	educ9 11
1,21239	1764	3950	0.319	1.00	.4101787	.4084591	educ13 15
1.39312	9779	3149	0.216	1.24	.4357493	.539075	educ16p
352389	5172	776	0.000	-5.22	.1081098	5642807	married
.003008	9714	0119	0.241	-1.17	.0038215	0044814	marriedsped
037721	5049	5436	0.024	-2.25	.1290543	2906631	msa5mm
.323502		0353	0.115	1.57	.0915401	.144087	cy2000
974031	3851	-3.550	0.001	-3.44	.6594049	-2.266441	_cons
							3
.039709		0398	0.997	-0.00	.0203052	0000877	exp
.001680		0004	0.239	1.18	.0005358	.0006304	exp2
.163257	2671	2062	0.820	-0.23	.0942682	0215049	northeas
.210397	5244	2556	0.849	-0.19	.1188854	0226133	midwest
.17858	\$1.57	136	0.792	0.26	.0802938	.021216	south
363266	9915	-1,219	0.000	-3.62	.2185369	7915907	aduc15
1522		-1.000	0.008	-2.66	.2163924	5764014	educ9 11
610192		1983	0.318	1.00	.206271	.205909	educ13 15
.973890		.0998	0.016	2.41	.2229862	,5368453	educ16p
351,985		-, 6209	0.000	-7.09	.0686207	4864796	married
.001330		0065	0.184	-1.33	.0021047	0027943	marriedsped
.118462		1938	0.636	-0.47	.0796857	0377185	msa.5mm
013071	651	2271	0.028	-2.20	.0546168	1201181	cv2000
2.03960		.5938	0.000	3.57	.3688239	1.316727	cons

White Males, 16-19

White Females, 16-19

	ultinomial probit regression og likelihood = -318.95807				Wald	r of obs = chi2(14) = > chi2 =	443 20.05 0.1286	Multinomial probit regression Log likelihood359,50268			
90 10 - 1	ooprobit	Coef.	Std. Brr.	z	₽> z,	[95% Conf.	Interval	coprobit	Coef.	Std	
1		(base outco	one)		10			1	(base outco	ome)	
2	exp oxp2 northess midwest south msa5mm cy2000 _cons	-1.125623 .5242705 .7524628 .784429 .6673839 8981771 .1335984 -1.33755	.8348448 .3364129 .4423812 .4530728 .3768331 .5216551 .1902228 1.015521	-1.35 1.56 1.70 1.73 1.77 -1.72 0.70 -1.34	0.178 0.119 0.089 0.083 0.076 0.085 0.482 0.181	-2.761889 1350866 1145884 1035635 0705954 -1.920602 2392314 -3.347935	.5106425 1.183628 1.619514 1.672449 1.406563 .1242481 .5064283 .6328347	2 exp ecp2 northeas midwest south nsa5mm cy2000 cons	8243124 .3398258 3427203 .670452 0555274 8313197 .2221266 -1.053101	.81 .33 .51 .42 .3 .60 .19	
3	exp exp2 northeas midwest south mea5mm cy2000 _cons	2858193 .2999464 .0790234 .1310829 .9921038 4513302 .0366721 .4238876	.6633529 .2589458 .3112092 .25314302 .2531449 .3206461 .1374727 .7432518	-0.43 1.16 0.25 0.42 0.35 -1.41 0.27 0.57	0.667 0.247 0.800 0.677 0.726 0.159 0.790 0.568	-1.585967 207576 5309355 484993 4236507 -1.079765 2327694 -1.032859	1.014329 .8074729 .6889822 .7471588 .6078853 .1771246 .3061136 1.980634	3 exp2 northeas midwsst south nsa5mn ey2000 cons	3106662 .2220301 2117173 .2760950 3127356 2039651 .0340296 .1825252	.50 .22 .28 .27 .24 .30 .12 .6	

Multinomial pr Log likelihood				Wald	r of obs chi2 14) > chi2	1 1 1	448 20,59 0,1126
coprobit	Coef.	Std. Brr.	*	P≻ π	[95% (Conf.	Interval]
1	(base outc	one)					
2	1						
ехр	8243124	.8151313	-1.01	0.312	-2.423	94	.7733155
exp2	.3388258	.3325281	1.02	0.308	31293	172	.9905689
northeas	-, 3427203	.5128208	-0.67	0.504	-1.3474	331	.66235
midwest	. 670452	.4281758	1.57	0.117	16875	572	1.509661
south	0555274	.385270	-0.14	0.865	8106!	584	. 6996035
nsa5mm	8313197	. 6088569	-1.37	0.172	-2.024	557	.362016
cy2000	.2221266	.1915678	1.16	0.246	15333	394	. 5975923
_cons	-1.053101	.9681178	-1.91	0.056	-3.750	577	.044375
3							
өнр	3196662	. 5959898	-0.55	0.595	-1.469:	185	.829852
exp2	.2820301	.2296188	1.23	0.219	1680:	L45	.732074
northeas	2117173	.2851562	-0.74	0.458	7706:	133	.347178
midwoot	.2760958	. 2758695	1.00	0.917	2645	005	.816790
south	3127356	.2446974	-1.28	0.201	7923	336	.166862
nsa5mn	2039651	.3031206	-0.67	0.501	7980	705	.390140:
cy2000	.0340296	.1234535	0.28	0.783	2079:	348	.275993
cons	.1825252	.647087	0.28	0.778	-1.085	742	1.45079

Black Males, 16-19

and the second second	a new street			Wald	ch12 10)		62 13.76 0.1844
		1942					
Doprobit	Ccef,	sta. Err.	2	E>1 2	1958	cont.	Interval
	(hase outco	ome)					
	1	1000					10.00
exp	3177407	2.067945	-0.15	0.878	-4.370	858	3.735357
exp2	.3593911	.8979327	0.40	0.689	-1.400	525	2,119307
midweat	1.758348	1.099451	1.60	0.110	3965	5358	3,913232
aouth	.9978421	. 6979117	1.43	0.153	3700	396	2.365724
CV2000	9358807	.3868247	-2.42	0.016	-1.694	1043	1777184
_cens	2.012184	1.969635	1.02	0.307	-1.84	3229	5.872598
						man	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
exp	1.835802	1.779972	1.03	0.302	-1.65	2879	5.324484
exp2	5402663	,747491	-0.72	0.470	-2.00	5322	.9247891
midwest	1.313127	1.028321	1.28	0.202	70	2346	3.3286
south	,7349358	.5472364	1.34	0,179	337	6278	1.807499
cy2000	4530605	.3050837	-1.49	0.138	-1.05	1013	.1448925
Cons	.2821	1,654603	0.17	0.865	-2.96	0862	3.525062
	likelihood ooprobit exp exp2 midweat cy2000 _cons exp2 midwest south cy2000	11ke1ihood = -56,643313 poprobit Ccof. (base outco exp nidwest outh cy2000 - 335807 exp midwest south exp exp nidwest 1,75834 0,971421 -335807 -335807 -5302653 nidwest 1,313327 -3439582 -4438053	(hase outcome) exp3177407 2.067945 csp2 .359301.0975327 idvest 1.758348 1.099451 osuth .9974321 .067811.067811. .067812	likelihood = -56.648311 poprobit Ccef. Std. Err. r (base outcome) exp exp exp iddeat 1.758348 1.099451 1.60 .9975421 .6979127 0.40 .9975421 .6979127 1.43 .9975421 .6979117 1.43 .9975421 .995635 1.02 .2012184 1.969635 1.02 exp exp exp midwest 1.3135802 1.779972 1.03 exp exp exp .1.335802 1.779972 1.03 exp .349253 .5472364 1.34 .7349353 .5472364 1.34 .7349353 7 -1.49	Wald Wald poprobit Ccef. Std. Err. z Prob (base outcome) (base outcome)	Wald chi2(10) Prob > chi2 Soprobit Ccef. Std. Err. E E>[1] [95% (base outcome) exp 3177407 2.057945 -0.15 6.076 -4.377 exp 3177407 2.057945 -0.15 6.076 -4.377 exp 3177407 2.057945 -0.15 6.076 -4.377 exp 3177407 2.057945 -0.15 0.076 4.377 exp 3177407 2.057945 -0.112 3177407 012 3177407 012 3177407 012 3177407 012 3177407 3177407 012 012 3177407 3177407 3177407 316747 316247	Naid chi2(10) waid chi2(10) = prob>chi2 Prob>chi2 = prob>chi2 (base outcome) [95% Conf. exp 3177407 2.067945 -0.15 0.076 -4.970658 cxp2 .389391 .6979327 0.40 0.689 -4.970658 cup2 .3979421 6.979117 1.43 0.110 -3.565358 cy200 .395807 .366247 -2.42 0.016 -1.459463 _cons 2.012184 1.969635 1.02 0.307 -1.652879 exp2 .835802 1.779972 1.03 0.302 -1.652879 exp2 .1835802 1.779972 1.28 0.202 -700346 gouth .313127 1.28 0.202 -702346 30021 -3492583 5472264 1.34 0.179 -3376276

Black Females, 16-19

Multinomial pr	obit regress	ion			r of obs		71
Log likelihood	= -71,9719				chi2(8)	=	5.25
rod liveliuooc	1 = -/1.9/19	Þ		Prob	> chi2	=	0.7311
coprobit	Coef.	Std. Err.	z	P≻ π	[95%	Conf.	Interval
1	(base outc	ome)					
2							
ахр	.3851659	.4736864	0.81	0.416	5432	424	1.313574
northeas	.499689	1.0194	0.49	0.624	-1.498	298	2.497676
midwest	.3918459	.9492769	0.41	0.680	-1.468	1703	2.252394
south	.6108096	.8910649	0.69	0.433	-1.135	646	2.357265
_cons	-1,566573	1.021009	-1.53	0.125	-3.567	714	.4345678
3						_	
exp	0034265	.4001545	-0.01	0.993	7877	149	7808619
northeas	1.065489	.879717	1.21	0.226	658	725	2,789702
midwest	.0203034	.8652165	0.02	0.981	-1.67	549	1.716097
south	.9438796	.785666	1.20	0.230	5959	976	2.483757
_cons	5813534	.8683135	-0.67	0.503	-2.283	217	1,12051

Hispanic Males, 16-19

Hispanic Females, 16-19

	i = -68.54275	3		Prob	> cni2	-	0.3628	
ooprobit	Coef,	Std. Err.	z	₽> z	[951	Conf.	Interval]	
	(base outor	one)						
exp exp2 nidwest south cy2000 _coss	-1.993028 .8396538 1.467008 1.565042 .1431049 -1.187571	1.932435 .7916671 .8576158 .7754531 .5183115 2.539375	-1.03 1.06 1.71 2.02 0.28 -0.47	0.302 0.289 0.087 0.044 0.782 0.640	-5.780 7111 2130 .045 871 -6.164	9852 9885 1818 2767	1.794476 2.391293 3.147904 3.084902 1.158977 3.789513	
exp exp2 nidwest south cy2000 _cons	.8759361 080211 1348249 .3838582 .2402897 -1.089077	1.461601 .5743763 .6247754 .5457095 .325823 1.685742	0.60 -0.14 -0.22 0.70 0.74 -0.65	0.549 0.889 0.829 0.482 0.482 0.461 0.518	-1.94 -1.20 -1.35 685 398 -4.39	5968 9362 7127 9117	3.740622 1.045546 1.089712 1.453429 .8788913 2.214917	

Mul	tinomial pr	obit regress:	Lon		Numbe	r of obs	=	98
					Wald	chi2(4)	-	7.40
Log	likelihood	= -79.44578	5		Prob	> chi2	-	0.1164
	ooprobit	Coef.	Std. Err.	z	₽> 2	[95%	Conf.	Interval]
1		(base outco	one)					
2								
	exp	4550024	.4579869	-0.99	0.320	-1.35	264	.4426354
	midwest	2.211198	.8925193	2.48	0.013	.4618	918	3.960503
	_cons	-1.10698	.6988852	-1.58	0.113	-2.47	677	,2628097
3			Autor 201 - 14					
	exo	.0778449	.3038696	0.26	0.798	5175	1286	.6734185
	midwest	1,265932	.7792965	1.62	0.104	2614	606	2.793325
	cons	.0013943	.505614	0.00	0.998	989	9591	.9923796

Appendix C - Labor Force Status Effects on Earnings, by Race/Ethnicity and Age Group, 1989 to 1991

I. Before Transition

Blacks, 16-19

Sample Size: 78, R²: 0.3349

Std. Err.

207.4284 505.6939 467.1227

467.1227 (omitted) 317.8847 1131.129 997.3293 574.4948 630.7999 548.6355 405.9194 560.6613 t

0.38 1.17 0.10

-0.34 1.49 -0.41 -1.54 -1.49 -0.16 -3.602.62

Coef.

78.50187 593.4254 44.50723

44.50723 0 -107.1586 1683.218 -405.04 -882.7382 -938.2928 -938.2928 -90.38898 -1460.202 1468.321

inc1

expl _Iregion_2 _Iregion_3 _Iregion_4

year yeareu

eu uo

ou

ue oe cons

Whites, 16-19 Sample Size: 488, R²: 0.2099

-			
incl	Coef.	Std. Err.	τ
expl	1050.422	182.4421	5.76
Iregion 2	-788.0179	325.93	-2.42
Iregion 3	-1303.212	339.6199	-3.84
Iregion 4	-988.3155	377.662	-2.62
year	-86.15733	263.5517	-0.33
yeareu	-818.4792	774.2679	-1.06
eu	975.6603	571.8372	1.71
uo	508.5396	713.9027	0.71
ou	-1285.502	551.0071	-2.33
ue	1170.075	494.2084	2.37
oe	-1367.591	294.5419	-4.64
_cons	2571.131	346.5793	7.42

Whites, 25-44

Sample	Size:	2736.	R ² :	0.2545

incl	Coof.	Std. Err.	t
expl	1083.918	394.3433	2.75
expli	-8.276109	7.048444	-1.17
expsch1	-51.40014	15.02397	-3.42
achi	2005.491	277.1144	7.24
_Iregion_2	-2747.514	592.094	-4.64
Iregion 3	-2706,854	578,4739	-4.68
Iregion 4	-2147.421	628.4293	-3.42
year	-523.5296	477.9224	-1.10
yeareu	2251.598	1119.519	2.01
ou	6909.768	959.4684	7.20
10	-3700.786	1100.63	-3.36
ou	-6998.522	1054.307	-6.64
ue	2708.378	684.9771	3.95
0e	-7326.421	587.6863	-12.47
cons	-17665.19	5021.151	-3,52

Blacks, 25-44

inc1	Coef.	Std. Err.	t
expl	1763.286	983.8998	1.79
exp11	-15.67586	16.52607	-0.95
expsch1	-72,22794	41.51681	-1.74
sch1	2393.171	740.7673	3.23
Iregion_2	1678.591	1740.52	0.96
Iregion 3	-2017.538	1461.166	-1.38
Iregion 4	6364.701	2246.877	2.83
year	481.2353	1151.207	0.42
yeareu	6757.012	2585.277	2.61
eu	173.4516	2196.151	0.08
uo	-6748.783	1849.041	-3.65
ou	-8521.948	1973.672	-4.32
ue	-384.6283	1583.711	-0.24
oe	-6081.498	1653.729	-3.68
cons	-28159.37	12616.7	-2.2

inc1 Coef. Std. Err. t 1303.256 -4516.742 -2204.545 -1510.325 792.2879 -2565.977 2081.69 7483.258 921.2415 3494.482 1936.705 1796.155 1459.506 3024.325 2180.258 3494.482 (omitted) 1.41 -1.29 -1.14 -0.84 0.54 -0.85 0.95 2.14 expl _Iregion_2 _Iregion_3 _Iregion_4 year yeareu eu uo ou ue oe 0 82.35694 -238.4766 1910.231 (omitted) 1888.448 1580.308 2300.689 0.04 -0.15 0.83 cons

Hispanics, 16-19

Sample Size: 31, R²: 0.4724

Hispan	nics, 2	25-44
Sample Size:	253,	R ² : 0.2841

-

incl	Coef.	Std. Err.	t
expl	1278.718	920.1209	1.39
exp11	-11,98822	16.9519	-0.71
expsch1	-60.77321	32.30357	-1.88
schl	1978.674	667.8745	2.96
Iregion_2	-3921.575	2421.397	-1.62
Iregion 3	-2905.558	1583.187	-1.84
Iregion 4	-3316.358	1470.68	-2.25
year	445.3673	1212.057	0.37
yeareu	6520.152	2812.051	2.32
อน	942.6899	2405.928	0.35
uo	-1110.549	2435.185	-0.46
ou	-6810.233	2503.827	-2.72
ue	835.0457	1678.282	0.50
oe	-4835.829	1426.592	-3.39
CODB	-18207.18	12155.41	-1.50

II. After Transition

Whites, 16-19

Sample Size: 505, R²: 0.1233

ins2	Coef.	std. mer.	Ľ
exp2	1307.034	553.1146	2.36
exp22	-218.5536	275.0317	-0.79
Iregion 2 2	-930.3078	379.0578	-2.45
Iregion_2_3	-1371.05	406.6732	-3.37
Iregion 2 4	-1373.022	400.6381	-3.43
year2	-342.7561	285.1701	-1.20
year2ue	-713.3081	1018.174	-0.70
eu	1365.394	513.5339	2.56
eo	-684.2248	342.7473	-2.00
uo	-2488.353	790.2618	-3.15
ou	-408.262	637.0407	-0.54
ue	682.5178	753.7355	0.91
cons	2960.174	360.3788	8.21

Whites, 25-44

Sample Size: 2734, R²: 0.2270

Blacks, 16-19

Sample Size: 68, R²: 0.3088 Coef.

1381.624 811.3948 646.5601 932.5248

932.5248 -39.28905 -267.6774 -464.1908 -2833.858 -2280.366 -1062.632 -1426.486 1439.165

Std. Brr.

500.3566 1035.142 962.2967

962.2967 2289.721 718.6613 2735.455 1387.792 958.0683 1005.059 1262.081 2101.316 1079.315

Hispanics, 16-19

Sample Size: 37, R²: 0.0939

inc2	Coaf.	Std. Irr.	t
exp2	817.1509	787.3892	1.04
_Iregion 2_2	-2349.768	4465.678	-0.53
Iregion 2 3	255.6217	2586.438	0.10
_Iregion_2_4	277.2906	2455.573	0.11
year2	-846.6052	1446.276	-0.59
eu	-377.9355	2566.565	-0.15
eo	189.7363	1964.677	0.10
ou	-2461.36	4190.559	-0.59
uo	-3984.07	4589.661	-0.87
ue	-169.3211	2524.34	-0.07
cons	2349.768	2300.548	1.02

Hispanics, 25-44

Blacks, 25-44

Sample Size: 261, R²: 0.2405 Sample Size: 448, R²: 0.2702

2.76 0.78 0.67 0.41 -0.05 -0.10

-0.33 -2.96 -2.27

-0.84 -0.68 1.33

inc2	Coef.	Std. Err,	t	inc2	Coef.	Std. Err.	t	inc2	Coef.	Std. Err.	t
exp2	882.3045	360.5632	2.45	exp2	303.0152	643.554	0.47	ажр2	455.2049	825.0856	0.55
exp22	-8.822607	5.38823	-1.38	exp22	3.882323	10.94997	0.35	exp22	-9.289252	14.87863	-0.62
expsch2	-40.52991	13.55031	-2.99	expach2	-23.83463	27.0095	-0.88	expsch2	-1.493627	29.09416	-0.05
sch2	1397.709	250.9342	5.57	ach2	938,2242	480.3734	1.95	sch2	282.0018	598.5931	0.47
Iregion 2 2	-1502.905	529.5667	-2.84	Iregion 2 2	3077.128	1147.455	2.69	Iregion 2 2	-3178.527	2011.612	-1.58
Iregion 2 3	-2338.351	519.4529	-4.50	Iregion 2 3	1018.725	969.5934	1.05	_Iregion_2_3	-3277.659	1370.518	-2.39
Iregion_2_4	-578.5691	551.6296	-1.03	Iregion 2 4	3948.773	1524.498	2.59	_Iregion_2_4	302.2514	1308.138	0.23
year2	-15.00408	422.3375	-0.04	year2	540.0213	748.7005	0.72	year2	-1790.635	1064.918	-1.68
yearue	-1140.155	1053,931	-1.08	yearue	-1082.375	1731.166	-0.63	yearue	560.1513	2715,804	0.21
eu	11873.13	559.8584	20.84	eu	6755.665	1141.343	5.92	013	8066.691	1413.906	5.71
eo	75.76562	517.4615	0.15	eo	-850,0933	1088.504	-0.78	ea	-669.3136	1260.179	-0.53
uo	-3432.685	961.3521	-3.57	uo	-3469.539	1304.543	-2.66	uo	-4592.869	2189.977	-2.10
011	-1966.068	953.7768	-2.06	ou	-3778.364	1413.071	-2.67	011	1014.529	2235.909	0.45
ue	6341.B82	806.5141	7.86	uo	3709.743	1439.168	2.58	ue	3200.899	1892.719	1.69
cons	-14830.51	4512.734	-3.22	_cons	-9554.26	8205.261	-1.16		-906,2483	10918.96	-0.08

Appendix D - Labor Force Status Effects on Earnings, by Race/Ethnicity and Age Group, 1999 to 2001

Blacks, 16-19

Sample Size: 26, R²: 0.7042

Coef.

3655.859 -1729.853 2103.543 -2817.924 0

0 -959,4154 -5011.04 -3151.291 -3360.007 -3146.568 1684.183 415.817 4285.032

Before Transition

Std. Err.

4562.447

4562.447 1721.761 1684.332 1566.749 (omitted) 2917.228 1077.51 1680.456 1614.374 1734.912 1123.815 3496.883 3722.645

t

0.80 -1.00 1.25 -1.80

-0.33 -2.67 -1.88 -2.00 -1.81 1.50 0.12 1.15

I.

incwag

expl expli _Iregion_2 _Iregion_3 _Iregion_4 ou oc ue ou

year1 yearleu _cons

Sample	Whites, 1 e Size: 122		26
incwag	Coei.	Std. Err.	t
expl	4106.372	2148.388	1.91
expli	-1309.79	905.1783	-1.45
Iregion 2	967.0454	1209.647	0.80
Iragion 3	-1052.071	1137.651	-0.92
Iregion 4	303.7088	1232,147	0.25
eı	3.469761	1687.386	0.00
00	-3521.711	944.3776	-3.73
uo	-3048.435	1573.301	-1.94
ue	-1658,99	1422.351	-1.17
ou	-3275.674	1651.091	-1.98
yearl	458.8738	807.3658	0.57
yearleu	-1136.179	2673.417	-0.42
cons	3101,989	1536.811	2.02

1111 1/ 1/ 10

1	Whites, 2	25-44
Sample S	Size: 209.	2, R ² : 0.1524
incwag	Coef.	Std. Err.

incwag	Coef.	Std. Err.	t
exp1	. 2189.72	809,4386	2.71
exp11	-17.10812	14.39776	-1.19
sch1	4196.641	576.2709	7.28
expsch1	-108.2438	30.51104	-3.55
Iregion 2	-1590,953	1287.667	-1.24
Iregion 3	-2030.259	1248.215	-1.63
Iregion 4	-814.2749	1266.528	-0.64
eu	5514.566	1967.181	2.80
oe	-10029	1120.931	-8.95
uo	-5952,229	2139.699	-2.78
ue	3838.562	1387.393	2.77
ou	-7725.277	2344.427	-3.30
year1	407.4291	950.3954	0.43
yearleu	3397.851	2616.542	1.30
cons	-44021.42	10481.27	-4.20

Blacks, 25-44					
Sample Size: 329, R ² : 0.2157					
incwag	Coef,	Std. Err.	t		
exp1	2402.507	2184.733	1.10		
exp11	-22.93602	36.23796	-0.63		
sch1	4681.999	1623.439	2.88		
expsch1	-141.8088	92.01689	-1.54		
Iregion 2	-2167.344	3347.101	-0.65		
Iregion 3	-3022.387	2713.442	-1.11		
Iregion 4	4302.104	6034.803	0.71		
eu	-7018.46	4385.816	-1.60		
oe	-18156.38	2950.361	-6.15		
uo	-13120,66	4301.046	-3.05		
ue	-10149.83	3341.362	-3.04		
ou	-15230.66	4591.191	-3.32		
year1	3437.427	2319.874	1.48		
yearleu	9666.195	6030.182	1.60		
cons	-40251.3	27759,48	-1.45		

Hispar	nics,	25-4-	4
ample Size:	381.	R ² :	0.0985

Hispanics, 16-19

Sample Size: 19, R²: 0.6430

Std. Err.

4703.058 1009.197 4420.609 3187.924 2493.818

2493.818 2240.8 2673.163 3647.739 4404.247 (omittad) 1989.062 4754.759 3503.771

t

0.04 0.22 -0.42 -0.80 -2.06 0.38 -0.99 -0.95 -0.44

0.89 0.43 1.27

Coef.

192,4815 415,1007 -1863,865 -2557,91 -5145,071 1245,375 -2643,557 -3660,649 -1935,604 0 1777,864

0 1777.864 2061.065 4455.916

incwac

year1 year1eu _cons

Sample Size: 381	, R ² : 0.098
------------------	--------------------------

incwag	Coef.	Std. Err.	t
exp1	3625.035	1853.653	1.96
exp11	-40.08061	33.36093	-1.20
sch1	4893.739	1283.653	3.81
expsch1	-205.301	64.67894	-3.17
Iregion 2	-221.508	3887.798	-0.06
Iregion 3	-3695.811	3105.377	-1.19
Iregion 4	-1886.32	2867.48	-0.66
eu	2580.89	4935.564	0.52
oe	-4196.147	2632.109	-1.59
uo	-6796.467	4511.914	-1.51
ue	-374.7005	3045.588	-0.12
ou	-12966.84	4717.666	-2.75
year1	2587.869	2212.486	1.17
yearleu	-2679.126	6575.15	-0.41
cons	-52438.16	23711.68	-2.21

inc2

61 00 110 ou ue cons

exp2 __Iregion_2_2 __Iregion_2_3 __Iregion_2_4 __year2 _year2ue

II. After Transition

Whites, 16-19 Sample Size: 186, R ² : 0.1712					
Sample	512e: 180,	R : 0.17	12		
incwag_2	Coef.	Std. Err.	t		
exp2	5050.617	3237.845	1.55		
exp22	-1490.689	1166.816	-1.28		
Iregion 2 2	-97,19073	972.5945	-0.10		
Iregion 2 3	324.4394	957.2741	0.34		
Iregion 2 4	-1140.915	1038.237	-1.10		
eu	2147.631	1508.428	1.42		
eo	-1968.652	772.6588	-2.55		
110	-3932.677	1451.815	-2.71		
ue	2952.61.6	2172.559	1.36		
ou	135,4233	1588.245	0.09		
year2	868.5199	690.2357	1.26		
year2ue	2168.097	2853.091	0.76		
cons	960.0446	2178.405	0.44		

Blacks, 16-19 Sample Size: 30, R ² : 0.5207					
incwag_2	Coef.	Std. Err.	τ		
exp2	3694.841	2517.708	1.47		
Iregion 2 2	6730.756	4499.825	1.50		
Iregion 2 3	3469.875	2344.84	1.48		
Iregion 2 4	145.1131	3515.804	0.04		
eu	-9506.082	6299.111	-1.51		
eo	-4135.685	2519.334	-1.64		
uo	-5907.667	3288.995	-1.80		
ue	956.282	3947.288	0.24		
D 11	-1624.658	2820.662	-0.58		
year2	-3178.517	1940.415	-1.64		
year2ue	-1114.944	6271.445	-0.18		
_cons	-1435.838	4962.955	-0.29		

	Hispanics, 16-19 Sample Size: 27, R ² : 0.6501			
incwag_2	Coef.	Std. Err.	t	
exp2	312.1471	1738.257	0.18	
Iregion 2 2	-3370.832	3905.141	-0.86	
Iregion 2 3	-4472.32	3129.242	-1.43	
Iregion 2 4	-9512.229	3073.851	-3.09	
eu	3554,199	3610,796	0.98	
eo	-4496.175	2848.699	-1.58	
uo	-5805.022	3160.86	-1.84	
ue	2854.421	2894.212	0.99	
ou	-1233.043	3273,893	-0.38	
year2	-1641.048	1994.208	-0.82	
year2ue	0	(omitted)		
_cons	11398.15	3231.138	3.53	

Hispanics, 25-44

Whites, 25-44 D2 0 1000 00.00

Blacks, 25-44 221 02.01926

Sample	Size: 2043	$R^2: 0.10$)96	Sample	Size: 331.	$R^2: 0.18$	26	Sample	Size: 381,	R ² : 0.18	39
incwag_2	Ccef.	Std. Err.	t	incwag_2	Coef.	Std. Err.	t	incwag_2	Coef.	Std. Err.	ti
exp2	1899.094	926.5812	2.05	exp2	-264.8992	1515.265	-0,17	exp2	3245.814	1155.192	2.81
exp22	-20,1627	16.20061	-1.24	esp22	8.717044	23.46055	0.37	exp22	-50.28867	20.17911	-2.49
sch2	3460.849	668.2042	5.18	schû	1775.593	1199,762	1.40	ach2	3313.043	043,2249	3.93
expsch2	-78.09965	35.33683	-2.21	expsch2	9.695677	74.27862	0.13	expsch2	-138.013	41.83421	-3.30
Iregion 2 2	-2393.243	1451.943	-1.65	_Iregion_2_2	1503.12	2342.107	0.64	Iregion 2 2	3275.126	2340.4	1.40
Iregion 2 3	-582.0017	1418.735	-0.41	Iregion 2 3	-758.3296	1842.162	-0,41	Iregion 2 3	-40.53885	1887.552	-0.02
Iregion 2_4	-758.833	1421.396	-0.53	_Iregion_2_4	-4349.382	4354.678	-1.00	Iregion 2 4	-99.86572	1749.641	-0.06
eu	11287.8	1649.304	6.84	eu	2104.833	2469.24	0.85	811	722.1459	2176.626	0.33
eo	-3950.858	1255.299	-3.15	eo	-5658.963	2042.933	-2.77	60	-4940.447	1620.112	-3.05
uo	-9229.599	2413.311	-3.82	uo	-8041.488	3013.967	-2.67	uo	-11909.77	2651.122	-4.49
ue	7759.977	2026.543	3.83	ue	4171.686	2962.476	1.41	uo	2121.773	2417.369	0.08
ou	-8365.954	2723,331	-3.07	ou	-8760.159	3377.03	-2.59	ou	-11104.77	3057.076	-3.63
year2	2385.088	1080.514	2.21	year2	2464.752	1623.926	1.52	year2	3357.872	1411.52	2.38
year2ue	-2389.854	2778.681	-0.86	year2ue	-3438.269	3955.155	-0.87	year2ue	-3830.491	3147.244	-1.22
_cons	~39915.1	12094.13	-3.30	_cons	-9925.203	19356,15	-0.51	_cons	-39671.47	15209.25	-2.61

Appendix E - Labor Force Status Effects on Earnings, by Race/Ethnicity and Age Group, 2006 to 2008

I. **Before Transition**

Blacks, 16-19

Sample Size: 29, R²: 0.7355

Std. Err.

7523,52 2574,172 3245,494 1413,24 2996,485 2861,618 1877,528 2318,427 2318,427 2314,386 3043.033 1524,884 4051,93 5386,744

t

 $\begin{array}{c} 2.58\\ -2.57\\ -0.44\\ 1.43\\ -0.12\\ -0.18\\ -2.99\\ -2.27\\ -2.37\\ -1.79\\ -0.65\\ 2.25\\ -1.34\end{array}$

Coef.

19435.25 -6625.363 -1424.66 2024.577 -524.3871 -5610.926 -5234.724 -5074.638 -5435.256 -1054.943 9134.255 -7194.307

incwag

expl expl _Iregion_2 _Iregion_4 eu oe uo ue uo ue yearl yearleu _____cons

Whites, 16-19

incwag	Coef.	Std. Err.	t
exp	335.032	4608.137	0.07
exp11	-407.9797	1746.237	-0.23
Iregion 2	591.4789	1744.727	0.34
Iregion 3	-581.9356	1687.263	-0.34
Iregion 4	-107.2947	1903.825	-0.06
eu	-576.7102	3645.234	-0.16
oe	-4330.908	1535.843	-2.82
uo	-1873.489	3323.228	-0.56
ue	929.9699	1943.331	0.48
ou	-4021.775	2707.52	-1.49
year1	771.0779	1370.557	0.56
year1eu	1693.358	4675.929	0.36
_cons	6999.819	3114.361	2,25

Whites, 25-44 Sample Size: 2205, R²: 0.1797

incwag	coef.	Std. Err.	τ
exp	4553.977	972.2781	4.68
exp11	-64.77292	17.6343	-3.67
nschl	5249.89	703.7595	7.46
expnsch1	-153.8522	36.82675	-4.18
Iregion 2	-1237.854	1707.889	-0.72
Iregion 3	595.593	1607.481	0.37
Iregion 4	2270.261	1644.220	1.30
eu	3337.683	2340.585	1.43
oe	-21777.33	1409.56	-15.45
uo	-16677.47	2682.899	-5.22
ue	-3743,806	1794.815	-2.09
011	-21004.11	2882.563	-7.29
vear1	-939.1258	1205.012	-0.78
year1eu	-5663.647	3295.056	-1.72
cons	-62393.87	12591.74	-4.96

Blacks, 25-44 Sample Size: 323, R²: 0.3287

incwag	Ccef.	Std. Err.	t
exp	4128.406	1792.315	2.30
exp11	-60.55154	31.03258	-1,95
nsch1	5525.693	1267.001	4.36
expnach1	-123,7147	73.90246	-1.67
Iregion 2	-3230.761	3417.235	-0.95
Iregion 3	-2246.253	2015.053	-0.80
Iregion 4	-244.0509	3605.162	-0.07
60	1364.977	3417.576	0.40
oe	-16676.55	2569.304	-6.49
no	-15957.89	3271.55	-4.88
ue	-9351.842	2915.087	-3.21
ou	-20413.6	4222.602	-4.83
year1	-730.5597	2053.356	-0.36
yearleu	-3979.611	5303.642	-0.75
cons	-66412.24	21740.61	-3.05

Sample Size: 26,		R ² : 0.1649	
Incwag	Coef.	Std.	Err.

Hispanics, 16-19

incwag	Coef.	Std. Err.	t
exp	902.4612	2617,183	0.34
Iregion 2	1879.629	7227.044	0.26
Iregion 3	3133.103	5461.618	0.57
Iregion 4	3935.463	5579.802	0.71
eo	2716.562	9332.31	0.29
oe	-195.8197	9145.937	-0.02
uo	-1860	10847.2	-0.17
ue	-4393.001	11302.76	-0.39
ou	-2834.478	10170.35	-0.28
cons	55.07762	9285.982	0.01

Hispanics, 2	
Sample Size: 479,	R ² : 0.2883

incwag	Coef.	Std. Err.	t
exp	2045.029	1154.707	1.77
exp11	-24.01975	20.63043	-1.16
nsch1	3020.459	895.9094	3.37
expnsch1	-88,49813	43.6107	-2.03
Iregion 2	1238,926	2703.058	0.46
Iregion 3	-3307.763	2060.38	-1.61
Iregion 4	262,5343	1942.218	0.14
eu	6375.883	2612.737	2.44
oe	-16073.5	1706.982	-9.42
uo	-15395.68	3134.042	-4.91
ue	-2134.857	2285.717	-0.93
ou	-14892.55	3154.762	-4.72
year1	-835.6733	1464.38	-0.57
yearleu	-7051.152	3855.072	-1.83
cons	-22962.6	15519.13	-1.48

II. After Transition

Whites, 16-19

Sample Size: 247, R²: 0.0657

incvag_2	Coof.	Std. Err.	t
exp2	1763.752	848.2606	2.08
Iregion 2_2	~659.5987	1502.222	-0.44
Iregion 2 3	-1568.565	1412.158	-1.11
iregion 2 4	-1321.286	1434.012	-0.92
e13	-2173.066	2090.251	-1.04
eo	-2119.077	1338.643	-1.58
10	-4466.294	2701.752	-1.65
ue ou	-755.0917 -4533.019	2834.466 1842.594	-0.27
year2	890.8728	1103.235	0.61
year21e	-2394.506	3770.425	-0.64
cons	5101.159	1683,022	3,03

Whites, 25-44

Sample Size: 2239, R²: 0.1301

incwag_2	Coef.	Std. Err.	t
exp2	2875.073	1136.462	2.53
exp22	-34,44271	20.1938	-1.71
noch2	4614.266	826.3742	5.58
expnsch2	-96,85897	44.25502	-2.19
Iregion 2 2	2116.012	1953.625	1.08
Tregion 2 3	1257.753	1857.862	0.68
Iregion 2 4	2093.892	1905.08	1.10
eu	5037.3	2073.994	2.43
eo	-15707.12	1630.991	-9.63
uo	-22032.97	2973.719	-7.41
ue	603,9124	2712.323	0.22
ou	-17408.7	3329.366	-5.23
year2	218.1596	1387.397	0.16
year2ue	51,59832	3715.416	0.01
cons	-52655.16	14763.38	-3.57

Blacks, 16-19 Sample Size: 40, R²: 0.6043

incwag_2	Coef.	Std. Brr.	1
exp2	2590.207	2214.046	1.17
Iregion 2 2	-24348.32	6592.477	-3.69
Iregion 2 3	-5568.019	3401.223	-1.64
Iregion 2 4	-2209.477	3876.38	-0.57
eu	4676.842	7275.981	0.54
60	-1180.038	2954.019	-0.40
uo	4345.660	3989.692	1.05
ue	2021.945	5328.566	0.38
ou	-4582.163	3324.668	-1.38
year2	1096.003	2525.413	0.43
year2ue	27864.88	7983.63	3.45
cons	3410.764	5122.643	0.57

Blacks, 25-44 Sample Size: 332, R²: 0.2622

incwag_2	Coef.	Std. Err.	t
exp2	1334.983	792.7941	1.68
exp22 nsch2	-31.97737 2499.174	23.39584 498.3816	-1.37
Iregion 2 2	-1934.913	3273.851	-0.59
Izegion 2 3	-1867.431	2681.565	-0.70
Iregion 2 4	2553.711	3433.151	0.74
eu	469.2959	2863.436	0.16
60	-14980.02	2374.623	-6.31
10	-16995,18	3083.027	-5.51
ue	-8274.964	3789.046	-2.18
ou	-7830.068	4077.156	-1.92
year2	990.7413	1907.308	0.52
year2ue	7984.766	4812.836	1.66
cons	-23405.38	9564.549	-2.45

Hispanics, 16-19

Sample Size: 52, R²: 0.2928

incwag_2	Coef.	Std. Err.	t
exp2	3497.383	1523.164	2.30
Iregion_2_2	2980.568	4266.516	0.70
Iregion 2 3	849.1944	3178.857	0.27
Iregion 2 4	2664.868	3098.93	0.86
eu	-316.8299	3638.591	-0.09
eo	-3480.031	2431.498	-1.43
uo	-1571.541	7127.563	-0.22
ue	-122.4906	3053.055	-0.03
ou	-6812.762	3055.638	-2.23
year2	-5366.646	2085.636	-2.57
year2ue	0	(omitted)	
cons	4371.541	3517.628	1.24

Hispanics, 25-44

Sample Size: 493, R²: 0.2010

incwag_2	Coef.	Std. Err.	t
exp2	2511.828	1124.938	2.23
ежр22	-28,42736	20.10487	-1.41
nsch2	3182.259	882.982	3.60
expnsch2	-104.7491	42.98836	-2.44
Iregion 2 2	17.9555	2546.187	0.01
Iregion 2 3	-132.6999	1970.687	-0.07
Iregion 2 4	1812.975	1861.014	0.97
eu	2174.016	2008.754	1.08
80	-10288.77	1624.773	-6.33
	-13516.17	2903,217	-4.66
ue	1759.175	2784.814	0.63
ou	-9272.872	2931.765	-3.16
year2	-833,7075	1375.729	-0.61
year2ue	2545.289	3819.266	0.67
_cons	-34140.31	15157.18	-2.25

I. Before Transition

Males, 16-19 Sample Size: 313, R²: 0.1974

incl	Coef.	Std. Err.	t
expl	1081.126	251.948	4.29
Iregion_2	-802.4931	489.1101	-1.64
Iregion 3	-1657.845	504.3519	-3.29
Iregion 4	-521.1452	555.3521	-0.94
year	-84.89423	391.7677	-0.22
yeareu	-399.2653	1067.935	-0.37
ou	776.8278	805.9873	0.96
uo	-24.45136	1058.537	-0.02
ou	-1704.399	709.7512	-2.40
ue	447.9019	654.807	0.68
00	-1709.143	449.3306	-3.80
CONS	2911.768	534.8171	5.44

Males, 25-44

Sample Size: 1124, R²: 0.2502

incl	Coef.	Std. Err.	Ľ
expl	1835.033	726.6667	2.53
expl1	-25.49338	12.74736	-2.00
expsch1	-41.05514	27.45224	-1.50
schl	2350,888	515.024	4.56
_Irogion_2	-4425.109	1130.904	-3.91
Iregion_3	-6443.765	1091.244	-5.96
_Iregion_4	-4992.18	1216.662	-4.10
year	-1817.57	1007.31	-1.80
yeareu	2780.325	1774.397	1.57
eu	5174.971	1687.39	3.07
uo	-6318.472	1971.317	-3.21
cu	-9743.427	2070.915	-4.70
ue	980.8075	1318.184	0.74
oe	-7607.711	1605.735	-4.74
_cons	-23467.4	9377.769	-2.50

Females, 16-19 Sample Size: 279, R²: 0.2331

incl	Coef.	Std. Err.	t
exp1	554.5781	163.6306	3.39
Iregion 2	-715.4255	305.5385	-2.34
Iregion_3	-1034.936	298.2227	-3.47
Iregion 4	-887.9787	372.9441	-2.38
year	-96.0765	232.3331	-0.41
yeareu	-1727.883	792.6814	-2.18
eu	1281.245	582.8752	2.20
uo	-325.2865	516.8422	-0.63
ou	-1231.714	554.7027	-2.22
ue	1266.858	515.6259	2.46
oe	-1162.363	257.4892	-4.51
_cons	2303.338	. 309.1676	7.45

Females, 25-44

Sample Size: 2185, R²: 0.2110

inc1	Coef.	Std. Err.	t
exp1	1214.786	346.6752	3.50
exp11	-9.913728	6.228795	-1.59
expschl	-72.22264	13.51471	-5.34
sch1	2087.597	245.3045	8.51
Iregion 2	-1223.901	531.2746	-2.30
Iregion_3	-766.1246	493.9901	-1.55
Iregion 4	561.0859	551.9368	1.02
year	274.6525	392.6369	0.70
yeareu	4248.375	1167.344	3.64
eu	187.498	951.1098	0.20
uo	-4654.229	874.6627	-5.32
ou	-6500.361	841.2357	-7.73
ue	-1109.392	648.2004	-1.71
00	-6660.819	459.8938	-14.48
cons	-19192.16	4384.239	-4.38

II. After Transition

Males, 16-19 Sample Size: 279, R²: 0.1481

inc2	Coef.	Std. Err.	t
exp2	1188.604	769.1241	1.55
exp22	-140.3728	367.107	-0.38
Iregion 2 2	134.9952	583.5978	0.23
Tregion 2 3	-492.3742	623.5749	-0.79
Iregion 2 4	-792.5247	617.5451	-1.28
year2	-683.0012	434.0827	-1.57
year2ue	224.7224	1544.362	0.15
eu	2154.84	738.0227	2.92
eo	-1063.152	526.6812	-2.02
uo	-2497.979	1008.443	-2.48
ou	-831.4225	794.7392	-1.05
ue	26.80208	1013.884	0.03
cons	2839.322	601,6731	4.72

Males, 25-44 Sample Size: 1135, R²: 0.2445

inc2	Coef.	Std. Err.	t
exp2	1060.079	640.4581	1.66
exp22	-15.5959	11.18908	-1.39
expsch2	-16.46094	24.21224	-0.68
sch2	1313.676	451.3947	2.91
Iregion 2 2	-2069.187	998.9844	-2.07
Iregion 2 3	-4675.832	945.2325	-4.93
Iregion 2 4	-1354.418	1046.47	-1.29
year2	-875.8942	045.085	-1.04
yearue	-1243.01	1638.272	-0.76
eu	8421.012	1314.374	6.41
eo	-3544.272	1439.612	-2.46
40	-8335.702	1857.691	-4.49
ou	-5154.957	1962.564	-2.63
ue	2941.04	1592.455	1.85
_cons	-12267	8309.606	-1.48

Females, 16-19

Sample Size: 317, R²: 0.1079

inc2	Coef.	Std. Err.	t
exp2	901.1156	528.701	1.70
exp22	-97.13518	274.6144	-0.35
Iregion 2 2	-1328.904	421.1457	-3.16
Iregion 2 3	-1321.782	418.3369	-3.16
Iregion 2 4	-1337.805	441.8972	-3.03
year2	-115.6964	301.4106	-0.38
year2ue	-139.435	1161.327	-0.12
eu	196.2834	603.6688	0.33
eo	-805.2597	362.2888	-2.22
uo	-1895.001	708.7228	-2.67
ou	-449.1696	801.7294	-0.56
ue	-169.1157	935.219	-0.18
cons	2911.897	367,9202	7.91

Females, 25-44 Sample Size: 2192, R²: 0.1432

inc2	Coef.	Std. Err.	t
exp2	1183.627	325.1686	3.64
exp22	-11.945	5.801.55	-2.06
expsch2	-66.8384	12.53164	-5.33
sch2	1692.197	228.4969	7.41
Iregion 2 2	-768.2186	485.6567	-1.58
Iregion_2_3	-877.3787	456.6776	-1.92
Iregion 2 4	207.3624	514.1899	0.40
year2	510.3112	361.0893	1.41
yearue	-461.5959	1085.732	-0.43
@11	6634.911	578.5811	11.47
eo	-151.7215	416.2079	-0.36
uo	-3282.714	773.6556	-4.24
ou	-2855.337	776,6739	-3.68
ue	2910.305	794.5589	3.66
_cons	-18744.03	4135.372	-4.53

Appendix G – Labor Force Status Effects on Earnings, by Gender and Age Group, 1999 to 2001

I. Before Transition

Males, 16-19 Sample Size: 83, R²: 0.2383

incwag	Coef.	Std. Err.	t
exp1	7526.103	3265.373	2.30
expl1	-2819.525	1273.757	-2.21
Iregion 2	2255.953	1749.72	1.29
Iregion 3	-545.0441	1675.193	-0.33
Iregion 4	1696.005	1769.919	0.96
84	451.6091	1800,603	0.25
oe	-2686.016	1337.171	-2.01
uo	-2285.811	1612.873	-1.42
ue	-2507.011	1483.577	-1.65
012	-3122.349	1741.821	-1.79
year1	786.5906	1025.227	0.77
yearlou	-993.4217	2738.053	-0.36
сопз	227.884	2469.694	0.09

Males, 25-44 Sample Size: 892, R²: 0.1991

incwag	Coef.	Std. Err.	t
expl	2890.913	1342.454	2.15
exp11	-49.40591	23.27266	-2.12
schl	4194.953	982.4497	4.27
expsch1	-47.79586	52.27627	-0.91
Iregion 2	711.0986	2092.219	0.34
Iregion 3	-1223,828	2037.488	-0.60
Iregion 4	-1902.569	2043.561	-0,93
ea	-847.0717	2695.326	-0.31
OB	-11776.26	2121.499	-5.55
uo	-10310.62	3285.445	-3.14
ue	-935.1024	2101.608	-0.44
ou	-18179.63	3997.838	-4.55
year1	799.2233	1622.141	0.45
year1eu	7942.769	3442.922	2.31
cons	-49834.18	17584.23	-2.83

Females, 16-19

	Samp	le Size:	78.	R ² :	0.3566
--	------	----------	-----	------------------	--------

incwag	Coef.	Std. Err.	t
expl	2831.024	2417.363	1.17
exp11	-970.2678	1026.58	-0.95
Iregion 2	939.6179	1396.958	0.67
Iregion 3	-1621.635	1207.326	-1.34
Ircgion_4	-945.2147	1320.140	0.72
eu	3362.733	3932.97	0.86
be	-4135.408	1032.113	-4.01
uo	-4088.171	1541.314	-2.65
ue	-587.8243	2331.074	-0.25
ou	-4975.643	1685.572	-2.95
year1	1017.296	907.2484	1.12
yearleu	-4773.496	5591.792	-0.85
cons	4477.925	1741.556	2.57

Females, 25-44 Sample Size: 1700, R²: 0.1538

incwag	Coef.	std. err.	t
exp1	2293.766	801.06	2.86
exp11	-13.81394	14.30975	-0.97
sch1	4478.137	553.3052	8.09
expschl	-143.9961	29.71675	-4.85
Iregion_2	-2311.305	1308,227	-1.77
Iregion 3	-1498.339	1213,155	-1.24
Iregion 4	751.6736	1285.707	0.58
en	525.0305	2377.076	0.22
00	-10442.08	1050.691	-9.94
110	-6841.436	2063.103	-3.32
ue	-354.3954	1478.37	-0.24
oʻu	-5958,192	2126.586	-2.00
yearl	704.1559	913.2122	0.77
yearleu	428.2406	3204.414	0.13
cona	-45678.6	10224.52	-4.47

II. After Transition

Males, 16-19 Sample Size: 122, R²: 0.3126

incwag_2	Coef.	Std. Err.	t
exp2	6093.371	5247.376	1.16
exp22	-1452.81	1846.489	-0.79
Iregion 2 2	841.7818	1400.646	0.60
Iregion 2 3	905.9172	1296.593	0.70
Iregion 2 4	-1517.605	1351.215	-1.12
eu	2456.34	1862.414	1.32
eo	-3007.946	1047.118	-2.87
uo	-4690.138	1595.649	-2.94
ue	3668.532	2048.132	1.79
ou	694,3473	1617.837	0.43
year2	166.9537	896.2889	0.19
year2ue	1784.066	2929.062	0.61
cons	-125.4633	3401.636	-0.04

Males, 25-44 Sample Size: 873, R²: 0.1404

incwag_2	Coef.	Std. Err.	t
exp2	3480.443	1512.057	2.30
exp22	-52.66114	26.14885	-2.01
sch2	4364.004	1118.385	3.90
expsch2	-93.15687	59.53933	-1.56
Iregion 2 2	-1018.409	2438.513	-0.42
Iregion 2 3	1039.394	2355.754	0.44
Tregion 2 4	1157.004	2335.906	0.50
eu	5555.623	2522.31	2.20
eo	-8789.415	2452.401	-3.58
uo	-15649.13	3764.421	-4.16
ue	4286.025	3133.178	1.37
au	-14254.16	4850.532	-2.94
year2	4805.226	1857.573	2.59
year2ue	-4580.988	3916.536	-1.17
cons	-58152.76	20031.72	-2.90

Females, 16-19

Sample Size: 117, R²: 0.1130

incwag_2	Coef.	Std. Err.	τ
exp2	5574.393	3351.324	1.66
exp22	-2185.47	1224.39	-1.78
Iregion 2 2	40.11075	1090.151	0.04
Iregion 2 3	414,9299	1101.239	0.38
Iregion 2 4	416.6549	1110.04	0.38
eu	-791.1361	1941.712	-0.41
00	-1472.992	855.1561	-1.72
10	-3465.934	1740.955	-1.99
ue	-831.9426	4125.676	-0.20
ou	-2909.322	1413.99	-2.06
year2	295.5221	765.3471	0.39
year2ue	3094.32	4694.193	0.66
cons	1083.381	2318,789	0.47

Females, 25-44 Sample Size: 1666, R²: 0.0930

incwag_2	Coef.	Std. Err.	t
exp2	1481,219	879.8208	1.68
exp22	-10.48189	15.34763	-0.68
sch2.	3359.355	621.4405	5.41
expsch2	-82.4925	33.60248	-2.45
Iregion 2 2	-2397.265	1408.355	-1.70
Iregion 2 3	-1321.361	1310.097	-1.01
Iregion 2 4	-1255.71	1382.15	-0.91
eu	5920.972	1838.247	3.22
eo	-2266.001	1124.698	-2.01
uo	-7518.025	2241.545	-3.35
ue	5881.396	2061.598	2.85
ou	-6802.046	2354,499	-2.89
year2	844.9874	1004.562	0.84
year2ue	-2129.717	2928.456	0.73
_cons	-35542.44	11303.46	-3.14

Appendix H - Labor Force Status Effects on Earnings, by Gender and Age Group, 2006 to 2008

I. Before Transition

Males, 16-19 Sample Size: 104, R²: 0.1463

incwag	Coef.	Std. Err.	t
exp	-2608,619	1456.848	-1.79
Iregion 2	-1188.155	2482.526	-0.48
Iregion 3	-1154.87	2168.711	-0.53
Iregion 4	-14.34124	2337.936	-0.01
eu	-641.1922	4041.022	-0.16
uo	-7173,351	3341.065	-2.15
ue	-2492.397	2262.544	-1.10
ou	-8104.119	3265.998	-2.48
oe	-6499.297	2287.576	-2.84
yearl	-1401,19	1872.383	-0.75
year1eu	2802.19	5797.493	0.48
cons	13563.88	2965.022	4.57

Males, 25-44 Sample Size: 1103, R²: 0.2120

incwag	Coef.	Std. Brr.	t
exp	5788.863	1452.553	3.99
exp11	-97.39861	26.31754	-3.70
nsch1	5702,234	1083.442	5.26
expnsch1	-126.4863	56.08758	-2.26
Iregion 2	-1130.552	2614.945	-0.43
Iregion 3	-673.0634	2482.491	-0.27
Iregion 4	2647,325	2471.558	1.07
eu	-3059.878	3108.278	-0.98
oe	-23273.02	2615.074	-8.90
uo	-24516.34	3865.268	-6.34
ue	-9296,534	2425.551	-3.83
ou	-26539,2	4165.878	~6.37
year1	-3078.171	1888.469	-1.63
yearleu	-4105.352	4225.193	-0.97
cons	-74221.68	18954.79	-3.92

Females, 16-19 Sample Size: 100, R²: 0.2583

incwag	Coef,	Std. Err.	t
exp	1243.978	893.5898	1.39
Iregion 2	3771.947	1486.655	2.54
Iregion 3	1988.495	1391.887	1.43
Iregion 4	626.8269	1550.299	0.40
eu	137.4663	2731.989	0.05
110	1301.313	2495.67	0.52
ue	1929.197	1844.875	1.05
ou	-2469.338	2723.839	-0.91
oe	-3176.083	1231.002	-2.58
year1	816.8421	1103.682	0.74
yearleu	2388.429	3458.603	0.69
cons	652.7611	1920.832	0.34

Females, 25-44

Sample Size: 1646, R²: 0.1769

incwag	Coef.	Std. Err.	t
exp	3541.877	916.4881	3.86
exp11	-39.6132	16.54555	-2.39
nschl	4885.744	642.3692	7,61
expnsch1	-164.2498	34.79079	-4.72
Iragion 2	-1954.823	1664.831	-1.17
Iragion 3	158.5461	1481,711	0.11
Iragion 4	-529.7654	1564.578	-0.34
	4768.407	2479.293	1.92
0.0	-16408.72	1245.653	-13.17
uo	-9903.057	2270.837	-4.36
ue	-5177.795	1904.03	-2.72
011	-15883.83	2652.083	-5.99
yearl	178.8019	1094.266	0.16
yearleu	-5567.922	3753.273	-1.48
CODB	-53301.18	11668.27	-4.57

II. After Transition

Males, 16-19

Sample Size: 170, R²: 0.1086

incwag_2	Coef.	Std. Err.	t
exp2	2774.52	1336.593	2.08
Iregion 2 2	-2160.53	2343.863	-0.92
Iregion 2 3	-3558.457	2005.509	-1.77
Iregion 2 4	-1408.846	2043.273	-0.69
eu	-3982.976	3093.959	-1.29
eo	165.4793	2154.346	0.08
uo	-5648.124	3156.864	-1.79
ue	1304.668	3530.914	0.37
ou	-5494.332	2355.619	-2.33
year2	971.4288	1650.489	0.59
year2ue	-2477.072	4720.397	-0.52
CONS	5473.895	2514.201	2.18

Males, 25-44

Sample Size: 1160, 1	K-: 0.2027
----------------------	------------

incwag_2	Coef.	Std. Err.	t
exp2	4022.635	1681.72	2.39
exp22	-59.1482	29.66943	-1.99
nach2	5697.243	1247.237	4.57
expnsch2	-81,47581	65.0779	-1.25
Iregion 2 2	2502.151	3041.858	0.82
Iregion 2 3	=1268.362	2862.473	-0.44
Iregion 2 4	-1193.833	2881.573	-0.41
eu	-6184.715	2884.741	-2.14
eo	-25673.54	2807.359	-9.15
uo	-33609.81	4380.33	-7.67
ue	-12547.46	3749.569	-3.35
ou	-29615.83	5052,102	-5.86
year2	-1671.257	2166.15	-0.77
year2ue	1656.186	4852.76	0.34
cons	-64428.81	22202.55	-2.90

Females, 16-19

Sample Size: 136, R²: 0.1313

incwag_2	Coef.	Std. Err.	t
exp2	377,4681	701.509	0.54
Iregion 2 2	1803,738	1303,993	1,38
Iregion 2 3	-704.0394	1137.072	-0.62
Iregion 2 4	~769.881	1278.802	-0.60
eu	-54.8863	2084.85	-0.03
eo	-2902.75	1014.664	-2.86
uo	112.6592	2056.202	0.05
ue	716.4996	2657.771	0.27
ou	-4160.533	1719.562	-2.42
year2	653.588	900.6567	0.73
year2ue	-60.43934	3661.398	-0.02
cons	3812.072	1472.018	2.59

Females, 25-44 Sample Size: 1653, R²: 0.1000

incwag_2	Coef.	Std. Err.	t
exp2	1709.197	981.7277	1.74
exp22	-14.50121	17.37393	-0.83
nsch2	3109.214	701.1452	4.43
expnsch2	-87.39649	38.96479	-2.24
Iregion 2 2	683.078	1725.199	0.40
Iregion_2_3	455.2154	1552.658	0.29
Iregion 2 4	92.59066	1647.287	0.06
eu	6709.402	2011.228	3.34
ec	-7842.974	1311.66	-5.98
100	-13510.54	2285.359	-5.91
ue	5026.683	2623.352	1.92
ou	-8270.505	2726.118	-3.03
year2	1994.591	1154.061	. 1.73
year2ue	-1069.845	3653.512	-0.29
_cons	-31866.72	12530.89	-2.54

96 Journal of Organizational Psychology Vol. 17(5) 2017

Appendix I – Labor Force Status Effects on Weeks Worked per Year, by Race/Ethnicity and Age Group, 1989 to 1991

I. **Before Transition**

Blacks, 16-19

Sample Size: 46

Std. Err.

.0406615 .0016916 4.192942 14.29682 6.354024 5.532236

(omitted) 12.92846

6.509520 7.931206 5.65234

5.591399 6.546073

τ

3.01 0.13 -0.23

0.64

1.41

-0.49 -0.60 -0.74 -1.47

0.40

Coef.

.1222528 .0002233 .9744128 9.192968 8.935242 4.896413

0 -6.274934

-3.947757 -5.907183 -8.319932

2.228691 7.539795

Whites, 16-19 Sample Size: 372

wkslyr	Coef.	Std. Err.	t
hwag	.0475536	.008306	5.73
income1	.001546	.0003309	4.67
year	. 3000278	1.777785	0.17
yeareu	4.64027	4.775309	0.97
Iregion 2	2419611	2.180531	-0.11
Iregion 3	-,8334995	2.381258	-0.35
Iregion 4	-2.939773	2.44249	-1.20
811	-6.941825	3.379734	-2.05
uo	-15,98906	4.119786	-3.00
011	-16.36502	4.008716	-4.08
De	-15.5528	2.070951	-7.51
ne	-12.11064	2.918641	-4.15
CONS	27.14163	2.475189	10.97

hwag incomel year yeareu Iregion_3 Iregion_4 iregion_4 ue ue ou ou ou ou ue ue cons

wkslyr

Whites, 25-44

wkslyr	Coef.	Std. Err.	t
hwag	.017455	.0022669	7.70
incomel	.0014342	.0002146	6.68
year	3723937	1.026081	-0.36
yeareu	3739037	2.292985	-0,16
incsch1	-,0000665	.0000149	-4.47
sch1	.4175441	.2607403	1.60
Iregion_2	7999827	1.273312	-0.63
Iregion 3	156203	1.236352	-0.13
Iregion 4	-2.632904	1.330553	-1.98
eu	4.061596	1.933996	2.10
uo	-12.86284	2.357873	-5.46
ou	-13.15624	2.534284	-5.19
oe	-13.33237	1.313043	-10.15
ue	-6.367426	1.330515	-4.79
cons	28.91033	3.654248	7,91

Sample Size: 2056

wkslyr	Coef.	Std. Err.	t
hwag	.0521537	.011884	4.39
incomel	.0037572	.0005465	6.87
incsch1	0002893	.0000376	-7.70
year	-3.072238	2.617847	-1.17
yeareu	4.993719	5.420832	0,92
sch1	3.205071	.7139802	4.49
eu	-8.961134	4.527249	-1.98
oe	-16.43803	4.034536	-4.07
ou	-22.87147	5.093862	-4.49
ue	-10.28825	3.239698	-3.18
uo	-14.71425	4.222818	-3.48
Iregion 2	-3.884251	3.969819	-0.98
Iregion 3	-1.638557	3.294089	-0.50
Iregion 4	3.780177	4.893048	0.77
cons	-1,055288	10.05606	-0.10

II. After Transition

Blacks, 16-19

Sample Size: 48

wkslyr_2	Coef.	Std. Err.	t
hwag2	.1309978	.0217025	6.04
income2	,0003625	.0006808	0.53
year2	-4.684871	3.129199	-1.50
year2ue	24.02856	11.66836	2.06
Iregion 2 2	5.756306	4.643313	1.24
Iregion 2 3	8.43631	4.632227	1.82
Iregion 2 4	6.725706	8.814538	0.76
eu	6.273639	5.063233	1.24
80	-1.566491	4.95004	-0.32
ou	2.953078	4.672351	0.63
20	-1.092154	6.324392	-0.17
ue	4.993769	7.671668	0.65
COBS	2.339039	5.239386	0.45

Blacks, 25-44

Sample Size: 304

Cosf.

.0001. .000369 .000369 .4218937 -.3973072 -.0709735 -.9723643 -7.256179 3.910349 -4.660928 -12.74431 -17.1678 .788418 29.29498

Std. Err.

.0111325

 $\begin{array}{c} .0111325\\ .0002561\\ 2.499139\\ 5.061502\\ .4862006\\ 4.081235\\ 3.384937\\ 5.009773\\ 3.420804\\ 3.533712\\ 5.059663\\ 5.13429\\ 4.201893\\ 7.601477 \end{array}$

t

3.96 0.14 -0.17 -0.08 -0.15 -0.25 -0.29

-0.25 -0.29 -1.45 1.14 -1.32 -2.52 -3.34 0.19 3.85

wkslyr_2

hwagy_i hwagy income2 year2 year2 year2 iregion_2_3 Iregion_2_3 iregion_2_4 eo ou uo ue _____u

9.67 3.19 0.23 -0.60 -2.19 -0.95 2.40 -0.95 -1.72 -1.72 -1.66 1.70 8.28 hwag2 incone2 .000307 1.378625 4.695416 1.855324 2.012103 6768472 inconez year2 year2ue _Iregion_2_2 _Iregion_2_3 _Iregion_2_4 eo ou uo uo uo .6769472 1.084375 -1.117234 -4.398172 -1.87266 5.646749 -.0849899 -4.355597 -8.005159 5.802259 16.08287 2.012103 1.96103 2.34926 1.710273 2.881134 4.815836 3.420471 1.941768

Whites, 16-19

Sample Size: 430

Coef.

.0838026

Std. Err.

.0086639

t

wkslyr_2

Whites, 25-44 Sample Size: 2267

	Vite Course		-
wkelyr_2	Coef.	Std. Err.	t
hwag2	.0118272	.0012947	9.14
income2	.000349	.0000391	8.92
year2	.3509981	.791507	0.44
ycarZue	6696913	1.823772	-0.37
sch2	8941435	.1460411	-6.12
Iregion 2 2	9232015	.9779254	-0.94
Iregion_2_3	.6692977	.9657936	0.69
Iregion 2 4	8823974	1.041774	-0.85
eu	8.266362	1.06883	7.73
90	0247904	.9655218	-0.03
ou	-8.502642	2.073209	-4.10
100	-6.674063	2.465682	-2.71
ue	4.694011	1.409647	3.33
_cons	35.69595	2.177746	16.39

Hispanics,	25-44
mispanics,	23-44

wkalyr_2	Coef.	Std. Err.	(L)
hwag2	.0664713	.0120498	5.52
income2	.0004864	.0002826	1.72
year2	2.247972	2.469484	0.91
year2ue	-4.720705	5.20464	-0.91
ach2	9691398	.3130264	-3.10
Iregion 2 2	-3.107085	4.529807	-0.69
Iregion 2 3	4172284	3.119632	-0.13
Iregion 2 4	-3.426389	3.016355	-1.14
eu	-2.921061	3.139099	-0.93
80	.5131609	2.894504	0.18
ou	-6.389564	5.488483	-1.16
110	-2.290793	7.906467	-0.29
ue	1,176686	3.827427	0.31
cona	28,54965	5,129864	5.57

Sample Size: 188

t	Std. Err.	Coef.	wkslyr_2
1.89	.0347075	.0657393	hwag2
1.10	.0011181	.0012354	incomez
-0.23	4.891248	-1.120728	year2
	(omitted)	0	Iregion 2 2
0.48	7.942571	3.779833	Iregion 2 3
1.31	7.570805	9.915449	Iregion 2 4
0.51	6.333391	3.202516	eu
2.27	6.074435	13.75946	eo
-0.34	10.18779	-3.490344	ou
	(omitted)	D	uo
-0.11	6.547344	7224595	ue
1.07	7.810266	8.380499	cons

Hispanics, 16-19

Sample Size: 26

wkslyr	Coef.	Std. Err.	t
hwag	.0550685	.0179479	3.07
incomel	.0004179	.00072	0.58
year	-5.57571	3.499268	-1.59
yeareu	7.377984	8.355147	0.88
incsch1	.0000329	.0000528	0.62
sch1	058489	.6319178	-0.09
_Iregion_2	-19.49994	7.722772	-2.52
Iregion 3	-4.514498	4.910878	-0.92
Iregion_4	-7.150735	4.448288	-1.61
eu	-5.87435	6.664119	-0.88
uo	-13.68171	6.647053	-2.06
ou	1.5878	9.181441	0.17
oe	-18.89449	4.528027	-4.17
ue	-9.140233	4.390844	-2.08
_cons	36.29006	8.664307	4.19

Hispanics, 25-44 Sample Size: 191

-22.47713 34.058

Hispanics, 16-19

Sample Size: 23

Std. Err.

.0538684 .0012409 5.70347 9.147901 6.625399 7.760517 6.710926 10.43673 {omitted} 5.32114 6.395483 6.473532

t

1.44 1.61 -2.86 -0.41

-2.55 0.57 0.31 7.40

-3.28

-3.51 5.26

Coef.

	Blacks, 2	5-44	
S	Sample Siz	e: 33.	3
wkslyr	Coef.	std.	Err
C10000-010/	and an end of the first of the	24040	

.0776153	hwag
.0019937	incomel
-16.32112	year
-3.79006	yeareu
0	Iregion 2
-16.89855	Iregion 3
4.404111	Iregion 4
2.076382	eu
-77.26673	120
0	ou
-17.47603	ce
-22 /7712	110

ue cons

wkslyr

Journal of Organizational Psychology Vol. 17(5) 2017	97

Appendix J - Labor Force Status Effects on Weeks Worked per Year, by Race/Ethnicity and Age Group, 1999 to 2001

I. **Before Transition**

Blacks, 16-19

Sample Size: 11

Std. Err.

.0332557

.0332557 .0003889 3.376888 4.11795 4.817163 (omitted) 2.978247 5.28073 4.088517

t

12.43 -9.35 -11.21

1.76

-11.98

1.63 -13.46 5.94

Coef.

4133657

-.0036354 -37.86609 7.257016

Hispanics, 16-19

Cannot be estimated because sample size is too small

	Whites, 1 Sample Si			
wkslyr	Coef.	Std. Err.	t	wkslyr
hwag	.0078599	.0057753	1.36	hwag
incomel	.0019079	.0004016	4.75	incomel
yearl	-2.351069	3.560087	-0,66	year1
region 2	-5.095141	5.114036	-1.00	eu
region 3	-3.537026	4.954728	-0.71	
region 4	-4.718153	5.436236	-0.87	uo
yearleu	18,89646	11.75453	1.61	ou
eu	3,683856	7.276605	0.51	ue
oe	-18,37269	4.273479	-4.30	oe
ou	-16.11981	6.997575	-2.30	_cons
ue	-5.222781	5.944834	-0.88	-
uo	-28.62355	8.252606	-3.47	
_cons	32.20907	5.909474	5.45	

W	hit	es,	25-4	4
			on prima	-

_Ireg _Ireg _Ireg

wkslyr	Coef.	Std. Err.	t
hwag	.0062787	.0017235	3.64
income1	.0004349	.0000499	8.71
sch1	-,4840502	.2658367	-1.82
year1	2.505705	1.388449	1.80
Iregion 2	.6382252	1.833299	0.35
Iregion 3	1.746817	1.843649	0.95
Iregion 4	-3.128574	1.802879	-1.74
yearleu	-5.070203	3.564698	-1.42
eu	1,13171	2.69058	0.42
oe	-15,43265	1.726349	-8.94
ou	-25.395	4.257522	-5.96
ue	-11.57833	1.848932	-6.26
uo	-21.05881	2,939444	-7.16
COBS	49.64463	3.855372	12.88

Blacks, 25-44

wkslyr	Coef.	Std. Err,	t
hwag	.0220225	.0068433	3.22
income1	.0004446	.00018	2.47
sch1	8401281	1.011841	-0.83
year1	3,465648	3.891017	0.89
Iregion 2	5.394182	5.576886	0.97
Iregion_3	1.933749	4.651593	0.42
Iregion 4	-10.1361	9.643467	-1.05
year1eu	-9.681137	9.424849	-1.03
eu	4.877326	6.977669	0.70
oe	-17.52758	5.440359	-3.22
ou	-20,84939	8.340551	-2.50
ue	-15.71118	5.276012	-2.98
uo	-25.87561	6.506947	-3.98
cons	49.17497	12,69275	3.87

II. After Transition

Blacks, 16-19

Sample Size: 20

Coef.

0 0 12.61356 -16.0153 11.67875

.061916 .0005055 17.19273 -9.020607 -3.31757 -2.458197 -27.80875

-.4024218 18.10859

Std. Err.

0854867 .0020405 16.21573 12.7585 19.49083 8.070338 18.31565 (om(1184)

18.31565 (omitted) 10.32022 23.65151 9.481484 10.02472 12.51577

t

0.72 0.25 1.05 -0.63 -0.17 -0.30 -1.52

1.22 -0.68 1.23 -0.04 1.45

wkslyr_2

eu eu eo uo ou ue __cons

hwad2 income2 lregion_2_2 Iregion_2_3 _lregion_2_4 year2 year2ue eu

Hispanics, 16-19

Sample Size: 17

wkslyr_2	Coef.	Std. Err.	t
hwag2	.145216	.050135	2.90
income2	.0068179	.001279	5.33
hwag2inc	0000189	4.030-06	-4.69
year2	-15.24149	8.779812	-1.74
eu	33,08851	13.65855	2.42
eo	2.587022	12.28632	0.21
uo	0	(omitted)	
ou	3,874553	12.56307	0.31
ue	-12.17308	8.499223	-1.43
cons	-2.86697	7.533534	-0.38

Whites, 16-19 Sample Size: 154

wkslyr_Z	coef.	Std. Err.	t
hwag2	.0468532	.0100753	4.65
income2	.0004694	.000274	1.71
Iregion_2_2	9.688848	3.498834	2.77
Iregion 2 3	11.41523	3.478671	3.28
Iregion 2 4	8.970671	4.016349	2.23
year2	1.381136	2.55255	0.54
year2ue	-26.74381	9.396391	-2.85
eu	2.870714	5.081932	0.56
eo	-2.352819	2.863065	-0.82
uo	-10.1119	5.085064	-1.72
ou	-3.888475	5.595306	-0.69
ue	6.48167	7.204368	0.90
_cons	8.554406	3.620228	2.36

Whites, 25-44 Sample Size: 1596

wkalyr_2	Coef,	Std. Err.	t
hwag2	.0083424	.0018504	4.51
income2	.0002472	.0000486	5.09
sch2	9490005	.2228161	-4.26
Iregion_2_2	148057	1.549388	-0.10
Iregion 2 3	2,182102	1.541398	1.42
Iregion 2 4	-,5423371	1.519288	-0.36
year2	.4086629	1.182089	0.35
year2ue	1775874	2.755505	-0.06
eu	4.462408	1.679315	2.66
eo	-2.986629	1.363254	-2.19
110	-11.87421	3.380172	-3.51
ou	-13.73833	3.462804	-3.97
ue	1.3335	2,02262	0.66
_cons	43.22782	3.248724	13.31

Blacks, 25-44 Sample Size: 235

wkslyr_2	Cöef.	Std. Err.	t
hwag2	.0372014	.0102662	3.62
income2	.0003498	.0002463	1.42
sch2	-1.375226	.742655	-1.85
Iregion 2 2	5.999612	4.23445	1.42
Tregion 2 3	5.968606	3.286093	2.12
Iregion 2 4	12.82946	8.660769	1.48
vear2	-1.719948	3.124082	-0.55
year2ue	-3.126057	6.565077	-0.48
eu	-4.410101	4.240034	-1.04
eo	-11.06372	3.879556	-2.85
uo	-18.98132	6.375497	-2.98
ou	-20.61889	6.897779	-2.99
ue	-8.102744	5.21584	-1.55
cons	43.72637	9.9118	4.41
-			

Hispanics, 25-44 Sample Size: 289

wkslyr_2	Coef.	Std. Err.	t
hwag2	.0447807	.0089933	4.98
income2	0001232	.0002031	-0.61
sch2	-1.491771	.4125193	-3.62
Iragion 2 2	1.350381	4.984252	0.27
Iregion 2 3	4342889	4.015405	-0.11
Iregion 2 4	-3.022149	3.695683	-0.82
year2	-1.640779	3.03676	-0.54
year2ue	9976335	5.901333	-0.17
eu	.9336683	4.108144	0.23
EO	1,88512	3.454431	0.55
uo	-5.233778	8.708095	-0.60
ou	-17.99087	8.132047	-2.21
ue	7524887	4.65827	-0.16
cons	46.84201	6.213378	7.54

7.257016 -57.71561 0 4.84211 -71.06066 24.29016 ou ue oe cons

Coef. wkslyr hwag .0210866

hwag	.0210866	.0046933	4.49
schl	6830715	.5374428	-1.27
yearl	2,672631	3.793777	0.70
Iregion 2	-5.812462	6.370173	-0.91
Iregion 3	-2.334102	5.537828	-0.42
Iregion_4	-11,0995	4.994942	-2.22
yearleu	-2.601429	10.20559	-0.25
eu	3125033	7.574798	-0.04
oe	-9.253732	4.820048	-1.92
ou	-33.72367	12.91926	-2.61
ue	-13,44109	4.654855	-2.89
10	-14.54011	7.500698	-1.94
CONS	60.02455	8.22526	7.30

Hispanics, 25-44

Sample Size: 266

Std. Err.

t

98 Journal of Organizational Psychology Vol. 17(5) 2017

Appendix K - Labor Force Status Effects on Weeks Worked per Year, by Race/Ethnicity and Age Group, 2006 to 2008

I. **Before Transition** DI 1 4440

Whites, 16-19 Sample Size: 96

wkslyr	Coef.	Std. Err.	t
hwag06	.000343	.0013544	0.25
incomel	.0002939	.0001091	2.69
Tragion 2	-1.35723	4.634084	-0.29
Iregion 3	4.5573	5.13769	0.89
Iregion 4	.2003521	5.671408	0.04
year1	8.252431	3.890888	2.12
yearleu	-1.963009	11.59128	-0.17
eu	2.689229	9.151624	0.29
uo	-21.91363	10.01339	-2.19
ou	-7.965431	9.208866	-0.86
ue	-2.343838	5.166249	-0.45
oe	-13.96605	4.497315	-3.11
cons	28.39063	4.452425	6.38

Whites, 25-44

wkslyr

hwag06 income1

incomel nschl _Iregion_2 _Iregion_3 _Iregion_4 yearl yearleu eu uo ou ue oe _cons

--

1-1-1

cons

Blacks, 16-19 Sample Size: 12							
wkslyr	Coef,	Std. Err.	t				
hwag06	.0280276	.0975368	0.29				
income1	0015704	.0050394	-0.31				
year1	-26.99476	16.6388	-1.62				
eu	-7.46449	22.68712	-0.33				
uo	-81.31011	26.0086	-3.13				
ue	-60.32447	24.19754	-2.49				
oe	-52.21891	22.90113	-2.28				
_cons	86.22356	27.67087	3.12				

Hispanics, 16-19 Cannot be estimated because sample size is too small

Hispanics, 25-44

5	Sample Size	mple Size: 1615			Sample Size: 233				Sample Size: 329			
r	Coef.	Std. Err.	t	wkslyr	Coef.	Std. Err.	t	wkslyr	Coef.	Std. Err.	t	
6	.014407	.0021903	6.58	hwag06	.0314098	.0071678	4.38	hwag06	.0107607	.0085185	1.26	
1	.000245	.000051	4.80	income1	.0002548	.000148	1.72	income1	.0005367	.0001944	2.77	
1	-1.53938	.2646084	-5.82	nschl	783464	.9150975	-0.86	nsch1	-1.171463	.4555575	-2.57	
2	6633437	1.922893	-0.34	Iregion 2	-4.328359	5.777903	-0.75	Iregion 2	2.049639	5.511617	0.37	
3	.4560983	1.866174	0.24	Tregion 3	.9773369	5.026031	0.19	Tregion 3	.2908174	4.344164	0.07	
4	814862	1.903304	-0.43	Iregion 4	2.834863	6.357053	0.45	Iregion 4	1.973035	4.126042	0.48	
1	.8074056	1.418616	0.57	year1	6593805	3.610941	-0.18	year1	.8965189	3.202909	0.28	
u	-1.784931	3,53438	-0.51	yearleu	3.06544	7.534779	0.41	yearleu	-8.378187	7.47386	-1.12	
u	-1.333711	2.564141	-0.52	eu	-16.19011	5.369179	-3.02	eu	4748465	5.321814	-0.09	
0	-23.66052	3.022257	-7.83	uo	-17,9354	6.160644	-2.91	110	-26.42157	6.752105	-3.91	
u	-27.07487	3.712661	-7.29	ou	-22.94374	7.874468	-2.91	ou	-25.50981	7.141572	-3.57	
e	-17.84881	1.859163	-9.60	ue	-21,72716	4.938873	-4.40	ue	-17.60471	4.255035	-4.14	
e	-20.17069	1.875512	-10.75	oe	-27.83296	4,983457	-5.59	oe	-22,1384	4.330905	-5.11	
8	65.33285	3,956809	16.51	_cons	52.76578	12.05925	4.38	_cons	56.58623	6.864461	8.24	

II. After Transition

Whites, 16-19

wkslyr_2	Coef.	Std. Err.	t
hwag062	.0043361	.0065146	0.66
incone2	.000846	.000258	3.28
Iregion 2 2	2.72294	3.843743	0.71
Iregion 2 3	4.394544	3.860081	1.14
Iregion 2 4	9536802	3.850634	-0.25
year2	.9764125	2.941316	0.33
yearlue	-4.13984	9.897463	-0.42
eu	-2.092043	5.085521	-0.41
00	-8.441409	3.690803	-2.25
110	-19.34925	7.671784	-2.52
ou	-13.69568	5.415129	-2.53
ue	1.679314	6.951643	0.21
cons	25.95503	3.619324	7.11

Blacks, 16-19 Sample Size: 25

wkslyr_2	Coef.	Std. Err.	t
hway062	.0286629	.0170556	1.68
Lncome2	.0032529	.0010359	3.14
Iregion 2 2	2.032934	12.61802	0.16
Iregion 2 3	14.73136	6.724221	2.19
Iregion 2 4	8.47599	7.356116	1.15
yearz	-14.5685	5.796095	-2.51
year2ue	-86.6257		Controlando
eu	-2.341263	11.21467	-0.21
eo	-1.143078	5.366746	-0.21
100	10.2813	8.285687	1.24
D L	21.83715	12.22246	1.79
ue	3137382	7,911601	-0.04
_cons	1.045143	7.268726	0.14

Blacks,	25-44

Sample Size: 219

Wkslyr_2	Coef.	Std. Err.	t
hwag062	.041952	.0095759	4.38
income2	.000238	.0002247	1.06
nsch2	-2.367661	.9481764	-2.50
iregion 2 2	-5.471818	6.27914	-0.87
Iregion 2 3	,8903806	5.324171	0.17
Iregion 2_4	12.64207	7.216355	1.75
year2	3.376096	3.736474	0.90
year2ue	-7.6708	8.046898	-0.95
cu	-5.22702	4.843274	-1.08
en	-10.73754	4.886645	-2.20
10	-7.98549	7.66844	-1.04
ou	154778	8,74632	-0.02
ue	1.291298	6.180947	0.21
0010	54.20147	13.25261	4.09

Bla
C

Sample Size: 340	Samp	le	Size:	340	
------------------	------	----	-------	-----	--

Hispanics, 16-19

Sample Size: 37

Coef.

.1286404 - 0022174 12,44666 -4.784505 -9.630527 -8.463504 -11,32386 -,2918906 -48.38944 -28.02048 16.54202 38.61656

Std. Brr.

.0418336 .0010975 18.39462 15.17789 14.02707 6.840772 13.28656 8.06177 21.36748 12.41 11.71752 15.87967

Ŀ.

3.08 -2.04 0.68 -0.32 -0.69 -1.24 -0.85 -0.04 -2.26 -2.26 1.41 2.43

wkolyr_2

eu eo uo ou ue ______

hwag062 income2 _Iregion_2_2 _Iregion_2_3 _Iregion_2_4 year2

wkslyr_2	Coof.	Std. Err.	t
hwag062	.0376693	.008931	4.27
income2	.0001183	.0001955	0.61
nsch2	-1.496995	.4047504	-3.70
Iregion 2 2	-1.665485	4.915465	-0.34
Iregion 2 3	.5418414	3.877208	0.14
Iregion_2_4	-3.292381	3.674185	-0.90
year2	0519609	2.700745	-0.02
year2ue	-1.605124	6.765337	0.25
eu	-6.617402	3.387897	-1.95
eo	-5.450509	3.338264	-1.63
10	-6.898343	9.622905	-0.72
ou	-12.07654	5.652235	-2.14
ue	-3,213619	4.882123	-0.66
cons	50.33216	6.332226	7,95

Whites, 25-44 Sample Size: 1667

and the second sec			
wkalyr_2	Coef.	std. err.	t
hwag062	.0056897	.001643	3.46
income2	.0003243	.000042	7.72
nsch2	-1.43501	.2279039	-6.30
Iregion 2 2	.3071369	1,65175	0.19
Iregion 2 3	2.315661	1.622582	1.43
Iregion 2 4	-1.718353	1.630579	-1.05
year2	2238293	1.233863	-0.18
year2ue	5567409	2.874519	-0.19
eu	-5.264904	1.65087	-3.19
eo	-10.51952	1.505193	-7.06
40	-23.59172	3.591848	-6.57
ou	-18.55681	3.254792	-5.70
ue	-7.014092	2.138803	-3.28
_cons	57.24466	3.446389	16.51

Blacks, 25-44 Sample Size: 233

Appendix L – Labor Force Status Effects on Hours Worked per Week, by Race/Ethnicity and Age Group, 1989 to 1991

I. **Before Transition**

Whites, 16-19 Sample Size: 367, R ² : 0.2241		Blacks, 16-19 Sample Size: 46, R ² : 0.4877			Hispanics, 16-19 Sample Size: 23, R ² : 0.6459						
hrslyr	Coef.	Std. Err.	τ	hrslyr	Coef.	Std. Err.	t	hrslyr	Coef.	Std. Err.	-
wklywg .	0126316	.0034478	3.66	_wklywg	.0485089	.0221087	2.19	_wklywg	.011653	.0304885	0
	0007332	,0001837	3.99	income1	0002637	.0007371	-0.36	incomel	.0023505	.0009238	2
	0070194	1,210749	0.01	year	-2.137884	2.621544	-0.82	year	-5.553218	7.443077	-0
yeareu .	5232415	3.193796	0.16	yeareu	-13.04991	9.426079	-1.38	yeareu	12,04069	10,90995	1
	5450532	1,479722	0.37	_Iregion_2	1.521242	4.065733	0.37	_Iregion_2	0	(omitted)	
	5756619	1.608216	-0.36	_Iregion_3	1.009137	3.572971	0.28	_Iregion_3	9.329319	7.960386	1
	5893764	1,673084	-0.35	_Iregion_4	0	(omitted)	100 00000000	Iregion_4	-1.914431	8.211108	-0
eu 7	.590494	2.28214	3.33	eu	18.60442	8.630931	2.16	eu	-4,709344	8.64127	-0
	.102215	2,904084	2,10	uo	8.964352	3.898524	2.30	uo	-46.77559	87,11277	-0
	.064336	2.775437	2.19	ou	14.49097	5.082277	2.95	ou	0	(omitted)	
	.740348	1.979196	4.42	ue	9,937081	3.517627	2.82	ue	1481355	8.931631	-0
	.374279	1.41046	4.52	oe	10.87499	3.684915	2.95	oe	-9.752138	6.615841	-1
	5.53078	1.588402	9.78	_cons	12.08202	4.156065	2.91	cons	23.61077	7.453095	3

Whites, 25-44

Sample Size: 2008, R²: 0.2586

hrslyr	Coef.	Std. Err.	t
wklywg	.0116496	.0017477	6.67
income1	.0005215	.0001043	5.00
incsch1	0000238	6.90e-06	-3.45
year	.7174107	.5960195	1.20
yearen	-1.335222	1.217629	-1.10
sch1	1773825	.1461033	-1.21
Iregion_2	1.081254	.7084987	1.53
Iregion 3	2.692837	.6897895	3.90
Iregion_4	2.037016	.7503447	2.71
eu	4.262493	1.029295	4.14
uo	2.495037	1.378971	1.81
ou	3.489352	1.537632	2.27
ue	5.634641	.7516989	7.50
08	-1.557	.7709436	-2.02
cons	27,91638	2.053612	13.59

Blacks, 25-44

Sample Size: 331, R²: 0.2174

hrslyr	Coef.	Std. Err.	t
wklywg	.0054209	.0038365	1.41
income1	.0009428	.0001954	4.82
incsch1	0000591	.0000152	-3.90
year	-1.599877	1.145363	-1.40
yeareu	.5121281	2.322086	0.22
sch1	.6816477	.3283054	2.08
Iregion 2	-1.33396	1.67161	-0.80
Iregion 3	.4326858	1.397508	0.31
Iregion 4	1.680624	2.021482	0.83
eu	2.864204	1.930231	1.48
uo	579268	1,91351	-0.30
ou	-4.09342	2.365518	-1.73
ue	4.078322	1.41784	2.88
oe	7106172	1.8043	-0.39
cons	23.54457	4,588361	5.13

Hispanics, 25-44

t

0.38 2.54 -0.75 1.10

1.17 -0.23 -0.54 -0.54

-0.02 -1.47 3.17

Sample Size: 187, R²: 0.2435

hrslyr	Coef,	Std. Err.	t
wkiywg	.0024373	.0088648	0.27
income1	.0006642	.0002859	2.32
incsch1	0000295	.0000201	-1.46
year	.9615952	1.513505	0.64
yeareu	-2.384181	3.309936	0.72
sch1	.5008689	.2833752	1.77
Iregion 2	-2.816083	3.387277	-0.83
Iregion 3	.2219527	1,943629	0.11
Iregion 4	1630294	1.778737	-0.09
eu	1.826117	2.79015	0.65
uo	1,105297	3.045359	0.36
ou	-10.71534	4.614556	-2.32
ue	1,92906	1.90604	1.01
oe	-4.295229	2.030714	-2.12
cons	26.68366	3.800811	7.02

After Transition II.

Blacks, 16-19

Sample Size: 48, R²: 0.7304

Coef.

 $\begin{array}{c} .0578615\\ .0006248\\ -6.33768\\ 13.06185\\ 5.10212\\ 6.72244\\ 20.93646\\ -1.324666\\ -4.981597\\ -2.203215\\ 8.067967\\ -1.760539\\ 12.37886\end{array}$

Std. Err.

.0157339 .0003855 .838558 6.573153 2.752782 2.726582 2.935078 2.935078 2.935078 2.931365 2.795173 4.649376 3.080599

t

3.68 1.61 -3.45 2.12 1.85 2.47 3.99 -0.45 -1.66 -0.58 2.89 -0.38 4.02

hrslyr_2

_wklywg_2 income2 year2 year2ue Iregion_2_2 Iregion_2_3 Tregion_2_4

n_2_4 eu eo uo ou ue _cons

Whites, 16-19 Sample Size: 427, R²: 0.3820

hrslyr_2	Coef.	Std. Err.	¢
WKLYNG Z	.0723391	.0070609	10.25
income2	.0001806	.0001718	1.05
year2	9547235	.9300396	-1.03
year2110	-2.104231	3.135003	-0.65
Iregion 2 2	.7092747	1.243737	0.57
Iregion 2 3	.8387939	1.349776	0.62
Iregion 2 4	2.613755	1.311726	1.99
eu	5.362434	1.542433	3.48
eo	1.149155	1.16939	0.98
40	4.706129	3.314888	1.42
ou	5.778966	1,946984	2.91
ue	4.025161	2.264198	1.78
cons	13.83622	1.311409	10.55

Whites, 25-44 Sample Size: 2178, R²: 0.2870

hrslyr_2	Coef.	Std. Err.	t
_wilywg 2	.0180147	.0013628	13.22
income2	.0003926	.0001072	3.66
incech2	0000232	7.200-06	-3.23
year2	045047	.5292981	-0.09
year2ue	1.029091	1.204834	0.85
sch2	-,3926178	.1320343	-2.97
Tregion 2_2	1.521821	64 64736	2.35
Iregion_2_3	3.496285	.639646	5.47
Iregion 2 4	1.975111	.690204	2.86
eu	6.328042	.6998845	9.04
eo	2.562838	.6578027	3.90
uo	5.451626	1.711157	3.19
ou	1.489921	1.393464	1.07
ue	4.930183	.9286373	5.31
cons	27.518	1.896872	14.51

Blacks, 25-44 Sample Size: 302, R²: 0.1101

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	9.12e-06	.0004865	0.02
income2	.0001585	.0002723	0.58
incsch2	2,688-06	.0000198	0.14
year2	-1.118208	1.196937	-0.93
year2ue	2.679039	2.402043	1.12
sch2	3596399	.3316383	-1.08
Invition 2 2	.1877229	1.932495	0.10
Iregion 2 3	8854872	1.526277	-0.54
Iregion_2_4	.3486528	2.404814	0.14
eu	4.48201	1.530827	2.75
eo	1.133507	1.705626	0.66
uo	-1.78973	2.518955	-0.71
ou	1.373391	2.438843	0.56
0.0	1,601022	2.007459	0.00
cons	37,96703	4.645036	8.17

hrolyr_2 Coef. Std. Err.

Hispanics, 16-19

Sample Size: 26, R²: 0.6669

_wklywg_2	.100781	.0529587	1.90	
income2	0003373	.0010232	-0.33	
year2	-5.42753	3.917305	-1.39	
Tregion 2 2	ö	(omitted)		
Iregion 2 3	-3.786396	7.441015	-0.51	
Iregion 2 4	4.953022	6.71854	0.74	
au	14.47355	5.714114	2.53	
eo	2.221898	5.117491	0.43	
uo	0	(onitted)		
013	13.07256	9.434744	1.39	
ue	-3.998589	6.095247	-0.56	
cons	13.51459	7.521607	1.90	

Hispanics, 25-44 Sample Size: 183, R²: 0.2735

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0237988	.0075189	3.17
income2	0000849	.0002674	-0.32
incsch2	9.310-06	.0000196	0.48
year2	.7208762	1.54947	0.47
year2ue	4.606947	3.232511	1.43
sch2	5525553	.2859445	-1.93
Iregion 2 2	1.318246	2.941101	0.45
Tregion 2_3	.3745352	1.91721	0.20
Iregion 2 4	071461.6	1.813129	-0.04
eu	-1.147915	1.868191	-0.61
eo	.2682838	1.825762	0.15
uo	-13.24937	6.247473	-2.12
ou	-7.402805	3.318647	-2.23
ue	-3.891778	2.367358	-1.64
cons	35.73814	3.831299	9.33

100 Journal of Organizational Psychology Vol. 17(5) 2017

Appendix M – Labor Force Status Effects on Hours Worked per Week, by Race/Ethnicity and Age Group, 1999 to 2001

I. **Before Transition**

Blacks, 16-19

Whites, 16-19

Sample Size: 88, R²: 0.3941

hrslyr	Coef.	Std. Err.	t
wklywg	.0472741	.009442	5.01
incomel	0000494	.0002741	-0.18
year1	.5185102	2.346343	0.22
yearleu	-2.50991	6.8939	-0.36
Iregion 2	-1.262423	3.265832	-0.39
Iregion 3	7359682	3.262794	-0.23
Iregion 4	2.457429	3.527791	0.70
eu	5.493684	4.509733	1.22
uo	-5,641648	5.677919	-0.99
ou	9.404701	4.678955	2.01
ue	10.32305	3.830663	2.69
00	.8725735	2.834209	0.31
cons	16.71861	3.875929	4.31

hrslyr	Coef.	Std. Err.	t
wklywg	.0851368	.0691978	1.23
income1	0015549	.0011597	-1.34
year1	-12.8451	10.65058	-1.21
eu	-2.526433	14.43712	-0.17
uo	-17.81527	22.03231	-0.81
ou	0	(omitted)	
ue	-3.751609	10.54	-0.36
ce	-39.21184	19.63701	-2.00
CONS	36.34295	17.67037	2.00

Hispanics, 16-19 Sample Size: 10, R²: 0.8550

hrslyr	Coef.	Std. Err.	t
wklywg	.0632499	.044958	1.41
income1	.0004836	.001954	0.25
year1	-1.013644	9.081319	-0.11
eu	11.10504	14.0382	0.79
uo	2.01811	16.3283	0.12
ou	0	(omitted)	
ue	26.91363	17.41298	1.55
0e	13.55385	17.84277	0.76
_cons	5.830784	19.71112	0.30

Whites, 25-44

Sample Size: 1540, R²: 0.1578

hrslyr	Coef.	Std. Err.	t
wklywg	.0006116	.0004869	1.26
incoae1	.0001489	.0000148	10.07
year1	1704947	.634139	-0.27
yearleu	.4303003	1.529479	0.28
eu	4.419084	1.14046	3.87
oe	1515341	.7930067	-0.19
011	-2.710507	2.147853	-1.26
ue	4.556793	.8220359	5.54
uo	5.398577	1.405036	3.84
Iregion 2	.4717321	.8240813	0.57
Iregion 3	2.231561	.8194525	2.72
Iregion 4	.9564205	.815461	1.17
ccns	30.7107	.8043687	38.18

Blacks, 25-44

Sample Size: 232, F(12, 219): 2.16

hrslyr	Coef.	Std. Err.	t
wklywg	.0536905	.0657208	0.82
income1	0007658	.0011179	-0.69
year1	1.177474	2.009247	0.59
yearleu	-1.16864	5.811184	-0.20
eu	2.666338	3.498349	0.76
oe	0173388	3.550299	-0.00
ou	.1695354	4.808553	0.04
ue	-1.451156	5.745492	-0.25
uo	-11.53388	9.570275	-1,21
Iregion 2	1.712317	3.56535	0.48
Iregion 3	1.537459	2.45538	0,63
Iregion 4	.7764982	5.030425	0.15
cons	30.17478	5.049265	5,98

Hispanics, 25-44

Sample Size: 262, F(12, 249): 0.05

hrslyr	Coef.	Std. Err.	t
wklywg	.0552183	.1956055	0.28
income1	0012242	.0046798	-0.26
year1	9,809241	39,84609	0.25
yearleu	-13.325	50.66391	-0.26
eu	11.7274	31,70634	0.37
oe	-2.252116	12,36021	-0.18
ou	-12,90978	65,21203	-0.20
ue	-18,21363	76.21314	-0.24
uo	-5.560364	33.53546	-0.17
Iregion 2	.9354719	17.86425	0.05
Iregion 3	-19.40821	62.5307	-0.31
iregion 4	-3,241711	12.23699	-0.26
cons	38,71813	13.42732	2.88

Hispanics, 16-19

Sample Size: 10, R²: 0.7540

0 2.040922 Std. Err.

.1578546 .0018788 14.02557 16.12897 17.2366 20.14252 (omitted) 19.63132 35.47398

t

0.02 1.27 1.00 -0.61 -0.16 -1.08

0.10

Coef.

.0030551 .0023951 14.08481 -9.884263 -2.786837 -21.75717

hrslyr_2

_wklywg income2 year2

eu 00 110 ou ue _cons

After Transition II.

Whites, 16-19 154 02 0

hrolyr 2	Coef.	Std. Brr.	÷
	100.000.000	Waltast reserve	
_wklywg_2	.0183551	.0058351	3.15
income2	.0004144	.0002021	2.05
year2	006545	2.067063	-0.00
year2ue	-7.309781	7.780537	-0.94
Tregion 2 2	3,89604	2.91025	1.34
Iregion 2 3	4.670669	2.893845	1,61
Iregion 2 4	7.419253	3.271513	2.27
eu	-9.028019	4.010613	-2.25
eo	-4.767536	2.346016	-2.03
uo	4.330437	4.822219	0.90
ou	2.37582	4.518264	0.53
ue	-2.894861	5.845614	-0.50
CONS	19.79587	3.009055	6.58

Whites, 25-44

Sample Size: 1568, R²: 0.1692

Ccef.

.0033857 .002697 .0000124 -.583745 .3514894 -.4318918 .0810014 2.297131 .806014 6.032196 1.275889 2.559732 -1.457437

-1.457437

5.252667 34.03797

Std. Err.

.0010745 .000707 4.36e-06 5692097 1.540054 .1506438 .8720307 8609768 .8563528 .9182406 .7766299 2.027028 2.027028

2.008845

1.12374 2.163867

E

 $\begin{array}{c} 3.15\\ 3.61\\ -2.84\\ -0.87\\ 0.23\\ -2.87\\ 0.90\\ 2.67\\ 0.94\\ 5.57\\ 1.64\\ 1.27\\ -0.73\\ 4.67\\ 15.73\end{array}$

hrslyr_2

_wklywg_2

cons

Blacks, 16-19 Sample Size: 20, R2: 0.9537

hrslyr_2	coef,	std. Err.	t
wklywg 2	.0222361	.0085417	2.60
income2	0000115	.0002634	-0.04
year2	-3.282085	2.202977	-1.49
year2ue	-5.120285	5.36037	-0.96
Iregion 2 2	-11.08035	4.368144	-2.54
Tregion 2 3	-13,42278	3.877812	-3.46
_Iregion_2_4	-5.043676	5.357619	-0.94
e1	0	(omitted)	
ep	9391447	2.80416	-0.33
110	-26.08331	5.899986	-4.42
0 II	16,25769	2,685135	6.05
118	11.90535	2.989514	3.98
cons	34.57642	3.81.6949	9.06

Hispanics, 25-44 Sample Size: 285, R2: 0.2509

hrslyr_2	Coef.	Std. Err.	t
wklywg_2	.011264	.0033877	3.33
income2	.0004745	.0001488	3.19
incsch2	0000261	.00001	-2.61
year2	.9151671	1.301703	0.70
year2ue	-3.067967	2.531956	-1.21
sch2	2777614	.2335757	-1.19
Tregion 2 2	1.452406	2.073949	0.70
Iregion 2 3	.6561793	1.689936	0.39
Tregion 2 4	4530758	1,544699	-0.29
813	1.526944	1.741586	0.86
eo	.1636037	1.469421	0.11
00	-6,777338	4.243696	-1.60
ou	3,126072	3.672275	0.85
ue	3.951206	1.965287	2.01
0058	31.72145	3.316791	0.54

Blacks, 25-44 Sample Size: 231, R²: 0.2025

hrslyr_2	Coef.	Std. Err.	t
wilyng 2	.004055	.0019107	2.12
income2	.000402	.0002663	1.51
incsch2	0000177	.0000199	-0.89
year2	-2.558869	1.490952	-1.72
year2ue	1.948395	3.188429	0.61
sch2	.6410568	.5433527	1.17
Iregion 2 2	. 6724758	1.998235	0.34
Iregion 2 3	.9489717	1.538605	0.62
Iregion 2 4	1.819869	4.203225	0.43
eu	-1.620655	1.926364	-0.84
eo	-1.125579	1.808085	-0.62
uo	-5.535054	3.308897	-1.67
oa	-8.374661	3.464549	-2.42
ue	-2.447959	2.37264	-1.03
cons	25.89073	7.09558	3.65

Journal of Organizational Psychology Vol. 17(5) 2017 101

Appendix N – Labor Force Status Effects on Hours Worked per Week, by Race/Ethnicity and Age Group, 2006 to 2008

I. Before Transition

Blacks, 16-19

Samp	Whites, 16-19 Sample Size: 96, R ² : 0.1794			
hrslyr	Coef.	Std. Err.	t	
wklywg	.0105678	.0051535	2.05	
incomel	0000151	.0000786	-0.19	
year1	-3.076283	2.743359	-1.12	
year1eu	-3.638956	8.192369	-0.44	
Iregion 2	.8880894	3.337201	0.27	
Iregion 3	5.18233	3.621622	1.43	
Iregion 4	-1,902855	4.019644	-0.47	
eu	-1.876359	6.566635	-0.29	
uo	-7.540015	7,401109	-1.02	
ou	8.081789	6.698026	1.21	
ue	-2.849156	3.742669	-0.76	
oe	-6.039641	3.179095	-1.90	
cons	27.24616	3.390042	8.04	

Whites, 25-44

Sample Size: 1589, R²: 0.1372

hrslyr	Coef.	Std. Err.	t
wklywg	.0038352	.0009204	4.17
incomel	.0000509	.0000194	2.62
year1	.0418736	.6629881	0.06
year1eu	.1573963	1.567772	0.10
Iregion 2	1,441583	.9009569	1.60
Iregion 3	1.985647	.8571155	2.32
Iregion 4	3.27935	.8731398	3.76
eu	2.969458	1.08869	2.73
uo	2,045591	1.532262	1.34
ou	5.34466	1.996373	2.68
ue	2.410559	.8659288	2.78
oe	-3.304089	.9084186	-3.64
cons	31.34952	.8832062	35.50

 Sample Size: 12, R²: 0.7990

 hrslyr
 Coef.
 Std. Err.
 t

 _wklywg
 .025265
 .0977042
 0.26

 _incomel
 -0014129
 .005415
 -0.26

 yearl
 -7.288804
 24.09394
 -0.30

 _Iregion_2
 -4.236111
 42.72259
 -0.01

 _Iregion_3
 -12.06561
 10.80755
 -1.12

 _Iregion_4
 0
 (omitted)
 0.16

 uo
 -33.47365
 105.7176
 -0.32

 ue
 -26.5376
 35.73765
 -0.74

 ue
 -26.5376
 35.73755
 -0.74

 ue
 -35.636
 35.47355
 10.12

 ue
 -35.636
 35.73755
 -0.74

 ue
 -35.635
 45.1541
 -0.10

 _cons
 58.05435
 47.53341
 1.22

Blacks, 25-44

Sample Size: 232, R²: 0.1948

hrslyr	Coef.	Std. Err.	t
wklywg	.0022671	.0017564	1.29
incomel	.0001257	.0000407	3.09
year1	.2427616	1.500394	0.16
yearleu	3.024098	3.318986	0.91
Iregion 2	-3.650893	2.461157	-1.48
Iregion 3	.2177384	2.037261	0.11
Iregion 4	3.775315	2.516483	1.50
eu	4133759	2.131859	-0,19
ao	2.632959	2.776622	0.95
ou	-6.185516	3.708586	-1.67
ue	.9091237	2.012285	0.45
oe	8080241	2.072389	-0.39
COLS	33.12085	2.385495	13.88

Hispanics, 25-44

Hispanics, 16-19

Cannot be estimated because sample size is too small

Sample Size: 324, R²: 0.2191

hrslyr	Coef.	Std. Err.	t
wklywg	.0000725	.0023159	0.03
income1	.0002638	.0000524	5.04
year1	.7032672	1.186121	0.59
yearleu	-1.293828	2.673495	-0.48
Iregion 2	1.054859	2.066327	0.51
Tregion 3	2.600225	1.606665	1.62
Iregion 4	.0475216	1.507786	0.03
au	1,742897	1.757807	0.99
uo	1.911411	2.77258	0.69
ou	2.458937	2.883614	0.85
ue	2.333993	1.55994	1.50
oe	-2.064441	1.642006	-1.26
cons	30.39376	1.758428	17.28

II. After Transition

Blacks, 16-19

Sample Size: 25, R²: 0.7234

Coof.

.0289404 -.0001387 -5.8816 -5.775825 10.59377 -6.511407 -5.170734 15.16235 -2.980144 -.1354246 -11.71084 8.582155 27.35226 Std. Err

.0267205 .00046 4.134233 18.29647 10.36869 7.228907 6.47686 8.634907 4.084562 6.129522 11.12971 6.519859 7.706696 te

1.08 -0.30 -1.42 -0.32 1.02 -0.90 -0.80 1.76 -0.73 -0.02 -1.05 1.32 3.55

hrelyr 2

__wklywg_2 income2 year2 year22ue __Iregion_2_2 __Iregion_2_4 ______eo uo ou ______ue _____ue ue ______ue

1

Whites, 16-19

hrelyr_2	Coef.	Std. Res.	t
wklywg 2	.0230781	.0057466	4.02
income2	0000341	.0001516	-0.23
year2	5.810972	1.734076	3.35
year2ue	-2.034484	5.764712	-0.35
Iregion 2 2	3139973	2,274606	-0.14
Iregion 2_3	0796436	2.264692	-0.04
Iregion 2 4	.7223948	2.270004	0.32
eu	-1.263799	3.027643	-0.42
eo	-1.621132	2.208983	-0.73
120	3114354	4.748731	-0.07
σu	4638552	3.377921	-0.14
ue	4.601057	3.989035	1.15
cons	19.92826	2.163468	9.21

Whites, 25-44

	Samp	le Size:	1641.	R2: 0.	1341
--	------	----------	-------	--------	------

hrslyr_2	Coef,	Std. Err.	t
wklywg 2	.0015043	.0007722	1.95
income2	.000089	.0000171	5.19
year2	.4952103	. 6899358	0.72
year2ue	-2.246745	1.630039	-1.38
Iregion 2 2	3560548	.9334003	-0.38
Iregion 2 3	1.228892	.9027777	1.36
Iregion 2 4	1.395414	.922941	1.51
	5.149073	.8868386	5.79
eo	1337105	.8603195	-0.16
20	2.500096	2.202694	1.17
011	3.275925	1.919065	1.71
ue	4.997587	1.189503	4.20
cons	30.55779	.9235462	33.09

Blacks, 25-44 Sample Size: 215, R²: 0.2591

hrslyr_2	Coef.	Std. Err.	t
_wklywg_2	0022773	,0010959	-2.08
income2	.0002668	.0000404	6.61
year2	.6446272	1.413337	0.46
year2ue	-3.070815	3.036599	-1.01
Iregion 2 2	-3.396218	2.412333	-1.41
Iregion 2 3	-1,635391	2.018823	-0.81
Iregion 2 4	1800363	2.564151	-0.07
eu	2.382804	1.728084	1.38
eo	-4.110571	1.896154	-2.17
uo	3.826731	3.043113	1.26
ou	1.766618	. 3.140547	0.56
ue	3.190096	2.336358	1.37
_cons	32.65581	2.243564	14.56

Hispanics, 16-19

hrslyr_2	Coef.	Std. Err.	+
wklywg 2	.0422249	.0175445	2.41
income2	0001758	.0005198	-0.34
Iregion 2 2	-3.054114	9.67824	-0.32
Iregion 2 3	4966585	8.651481	-0.06
Iregion 2 4	-2.476116	7.934364	-0.31
year2	6.248969	4.276757	1.46
eu	2.342697	8.688797	0.27
eo	-3.691755	5.563384	-0.66
uo	-16.26473	12.77274	-1.27
ou	-3.503494	9.400295	-0.37
uo	7.725233	7.667695	1.01
CORS	20.84845	8,412394	2.48

Hispanics, 25-44 Sample Size: 335, R²: 0.1745

Coef.	Std. Err.	t
.0086755	.0031768	2.73
.0000948	.0000646	1.47
0957641	1.205442	-0.08
0261156	2.930231	-0.01
-1.982589	2.173385	-0.91
.243835	1.727551	0.14
,4316927	1.640909	0.26
3.245048	1.484349	2.19
2.212804	1.535243	1.44
2.409301	4.491188	0.55
1.386437	2.64324	0.52
.611764	2.101246	0.29
30.32893	1.873054	16.19
	.0086755 .0000948 0957641 0261156 -1.982589 .243835 .4316927 3.245648 2.212804 2.489301 1.386437 .611764	.0086755 .0031768 .000048 .000064 -0957441 1.205412 -0261156 2.930231 -1.992309 2.173385 .243835 1.72751 4316927 1.640999 3.245048 1.484319 2.212804 1.484319 2.212804 1.484319 2.212804 1.4535213 .499301 4.491100 1.386437 2.40324

Appendix O - Labor Force Status Effects on Hours Worked per Week, by Gender and Age Group, 1989 to 1991

1. **Before Transition**

Males, 16-19 Sample Size: 235, R²: 0.1730 hrslyr Coef. Std. Err. t .0104037 .0006213 1.805089 2.581889 2.581889 2.9459988 2.231638 5.786741 10.52506 7.805932 7.287275 6.331527 17.05701 .0042649 .002245 2.244269 2.37707 2.413349 1.804936 4.410324 3.306013 3.306013 3.306013 3.583793 2.67067 2.155711 2.398572 _wklywg income1 _Tregion_2 _Iregion_3 _Iregion_4 _year yeareu 2.44 2.54 0.80 1.09 0.73 -0.52 0.51 1.75 2.41 2.18 2.73 2.94 7.11 eu uo ou ue 00

Males, 25-44

CODS

Sample Size: 988, R²: 0.1329

hrslyr	Coef.	Std. Err.	t
wklywg	.0101386	.0019953	5.08
incomel	.0000193	.0000417	0.46
Iregion 2	1.227744	.9010595	1,36
Iregion 3	.1384639	.8675558	0.16
Iregion 4	1.361836	.9721277	1.40
year	1588479	.8294529	-0.19
yeareu	.1138492	1.378515	0.08
eu	1.079426	1.295302	0.83
120	-1.354043	1.721347	-0.79
ou	.819955	1.913234	0.43
ue	3.122821	1.017255	3.07
oe	2.723291	1.415931	1.92
cons	34.76678	1.180371	29.45

Females, 16-19 Sample Size: 195, R²: 0.3665

hrslyr	Coef.	Std. Err.	t
wklywg	.0512786	.0095425	5.37
incomel	.0006454	.0002743	2.35
Iregion 2	.3155598	1.73247	0.18
Iregion 3	-2.786213	1.764556	-1.58
Iregion 4	-3.377696	2.061584	-1.64
year	15056	1.339972	-0.11
yeareu	-2.956627	4.061795	-0.73
eu	8.042612	2.806364	2.87
uo	8.345351	2.638663	3.16
ou	3.243258	3.485079	0.93
ue	6.839159	2.498673	2.74
oe	5.628762	1.560441	3.61
cons	11.89373	1.869507	6.36

Females, 25-44

Sample Size: 1458, R²: 0.1947

hrslyr	Coef.	Std. Err.	. t
wklywg	.006718	.0021751	3.09
income1	.0002933	.000049	5,98
Iregion 2	.4166072	.872995	0.48
Iregion_3	3.358406	.7989187	4.20
Iregion 4	2.143849	.8955679	2.39
year	.6505529	.6616805	0.98
yeareu	-2.48345	1.663027	-1.49
eu	4.935174	1.334617	3.70
uo	2.531218	1.459119	1.73
ou	1.001156	1,751755	0.57
ue	3.630506	.9600194	3.78
oe	-2.733314	,7986438	-3.42
cons	25,26425	.8473665	29.82

Journal of Organizational Psychology Vol. 17(5) 2017 103

II. After Transition

Males, 16-19 Sample Size: 237, R²: 0.3726

hrslyr_2	Coef.	Std. Err.	τ
wklywg 2	.0652906	.0099267	6.58
income2	.0002132	.0002398	0.89
year2	8272697	1.364106	-0.61
year2ue	3.75018	4.561713	0.82
Iregion 2 2	1.178541	1.815071	0.65
Iregion 2 3	.7031022	1.987184	0.35
Iregion 2 4	3.393722	1.911173	1.78
eu	4.955954	2.102516	2.36
uo	3.567014	3.662531	0.97
ou	7,15463	2.308146	3,10
ue	2.320536	2.867196	0,81
eo	2.057871	1.721937	1.20
cons	15.17688	1.942636	7.81

Males, 25-44 Sample Size: 960, R²: 0.0775

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0005737	.000522	1.10
income2	.0001595	.0000274	5.81
year2	852922	.8121544	-1.05
year2ue	1.219316	1.476188	0.83
Iregion 2 2	1.339166	.9285497	1.44
Iregion 2 3	.4622361	.8985345	0.51
Iregion 2 4	1.580054	.973239	1.62
eu	4.223994	1.173544	3.60
uo	5.442971	2.286167	2.38
ou	2.160256	1.986416	1.09
ue	2.495953	1.399264	1.78
eo	2.984302	1.390335	2.15
cons	33.43583	1.275254	26.22

Females, 16-19 Sample Size: 257, R²: 0.3240

hrslyr_2	Coef.	Std. Err.	t
_wklywg_2	.0686143	.0092083	7.45
income2	.0002167	.0002254	0.96
year2	8678886	1.092501	-0.79
year2ue	-2.045058	3.930819	-0.52
Iregion 2 2	.2160319	1.555365	0.14
Iregion 2 3	1.454043	1.539105	0.94
Iregion 2 4	1,40363	1,636049	0.86
eu	4.587156	2.0004	2.29
uo	9572142	4.898868	-0.20
· ou	2.301518	2.692124	0.85
ue	2.698992	3.123787	0.86
eo	-1.058297	1.396978	-0.76
cons	13,99099	1.591176	8.79

Females, 25-44 Sample Size: 1626, R²: 0.2074

hrslyr_2	Coef.	Std. Err.	t
wklywg_2	.0162079	.0016159	10.03
income2	.0001093	.0000364	3.01
year2	1324714	.6000984	-0.22
year2ue	1.089887	1.614628	0,68
Iregion 2 2	1.175548	.7888867	1.49
Iregion 2 3	4.141786	.7424377	5.58
Iregion 2 4	2.112765	.8448432	2,50
eu	6.473381	.8678628	7.46
uo	1.152687	1.824503	0.63
ou	2.525328	1.562426	1.62
ue	3.045022	1.171716	2.60
eo	2.419153	.6883599	3.51
cons	21,95368	.775054	28.33

Appendix P – Labor Force Status Effects on Hours Worked per Week, by Gender and Age Group, 1999 to 2001

I. Before Transition

Males, 25-44 Sample Size: 747, R²: 0.1099

hrslyr	Coef.	Std. Err.	t
wklywg	.0021695	.0013788	1.57
incomel	.000085	.0000284	2.99
Iregion 2	.4293686	1.017034	0.42
Iregion 3	.9419144	1.012328	0.93
Iregion 4	~.0585878	1.017049	-0.06
year1	0055862	.8228724	-0.01
yearleu	2659801	1.621298	-0.16
eu	1.429628	1.252419	1.14
uo	2.567077	1.657135	1.55
ou	-2.913778	2.446264	-1.19
ue	1.247952	.990041	1.26
00	7624434	1.127357	-0.68
cons	37.32503	1.133206	32.94

Females, 16-19

Sample Size: 50, R²: 0.2603

hrslyr	Coef.	std. Err.	t
wklywg	.0060604	.0111358	0.54
incomel	.0002511	.0005868	0.43
Iregion 2	-3.415602	5.430537	-0.63
Iregion 3	-,2058536	5.458951	-0.04
Iregion 4	11.1513	6.167386	1.81
yearl	2.468294	4.300151	0.57
yearleu	-29.43673	20.04477	-1.47
eu	21.24806	13.96304	1.52
110	2.117533	8.153525	0.26
ou	6.018623	10.0559	0.60
ue	18.88964	14.40712	1.31
oe	7.131844	4.594235	1.55
cons	15.70564	6.740374	2.33

Females, 25-44 Sample Size: 1139, R²: 0.1228

hrslyr	Coef.	Std. Err.	t
wklywg	.0003726	.000509	0.73
incomal.	.0001506	.0000175	8,60
Iregion 2	.6304667	1.014043	0.62
Iregion 3	3.108311	.9524723	3.26
Iregion 4	1.767613	1.001759	1.76
yearl	4857441	.7262851	-0.67
yearleu	2.092372	2.18479	0.96
61	2.560329	1.632347	1.57
uo	3.388269	1.624113	2.05
ou	-1.728076	2.319412	-0.75
ue	3.713143	1.031469	3.60
08	54503	.8922713	-0.61
cons	29.09891	.9384083	31.03

II. After Transition

Males, 16-19 Sample Size: 97, R²: 0.1857

hralyr_2	Coef.	Std. Err.	t
wklywg 2	.0130283	.0069439	1.88
income2	.0004378	.0002769	1.58
Iregion 2 2	4.839236	4.849378	1.00
Iregion 2 3	5.906169	4.607316	1.28
Iregion 2 4	8.577868	4.870764	1.76
year2	1.045315	2.904128	0.36
year2ue	-10.23871	8.486674	-1.21
eu	-4.540686	5.559746	-0.82
eo	-1.788909	3.581368	-0.50
uo	.8057637	5.769864	0.14
ou	4.245662	4.790394	0.89
ue	2.226597	5.777921	0.39
_cons	18,99482	5.059743	3.75

Males, 25-44 Sample Size: 694, R²: 0.0983

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0029577	.001296	2.28
1ncome2	.0000461	.0000274	1.68
Iregion 2 2	650463	1.17418	-0.55
Iregion 2 3	.4852216	1.154578	0.42
Iregion 2 4	625478	1.128175	-0.55
year2	-1.943369	.9452846	-2.06
year2ue	1.339082	1.783162	0.75
eu	3.079686	1.141271	2.70
eo	3.659422	1.280998	2.86
uo	3943396	2.372756	-0.17
ou	2.60697	2.76678	0.94
ue	1.105675	1.410547	0.78
_cons	37.33292	1.269121	29.42

Females, 16-19

Sample Size: 91, R²: 0.2951

hrslyr_2	Coef.	Std. Err.	t
_wklywg_2	.0357995	.0095384	3.75
1ncome2	.0001761	.0002518	0.70
Iregion 2 2	3.953439	3.1527	1.25
Iregion 2 3	1.718017	3.147375	0.55
Iregion 2 4	1.316649	3.428048	0.38
year2	9812627	2.259438	-0.43
year2ue	3.79812	12.10962	0.31
ou	-8.761453	4.979241	-1.76
0.0	-6.436822	2.488226	-2.59
uo	9230229	6.155723	-0.15
013	-5.431199	4.606673	-1.18
ue	-8.995067	10.57376	-0.85
cons	20.25674	3.259538	6.21

Females, 25-44 Sample Size: 1224, R²: 0.1199

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.003415	.0011824	2.89
income2	.0000726	.0000261	2.78
Iregion 2 2	.4639165	.9917238	0.47
Iregion 2 3	3.364096	.931708	3.61
Iregion 2 4	1.687875	.9753487	1.73
year2	.0306685	.7273109	0.04
year2ue	.7836441	1.901323	0.41
eu	3,898725	1.184765	3.29
eo	.7176027	.8002441	0.90
uo	1.293285	2.282149	0.57
ou	-3.76682	2.027024	-1.86
ue	4.248914	1.342013	3.17
cons	26.99733	.915828	29.48

Appendix Q - Labor Force Status Effects on Hours Worked per Week, by Gender and Age Group, 2006 to 2008

I. **Before Transition**

Males, 16-19 Sample Size: 62, R²: 0.1951

20.000			
hrslyr	Coef.	Std. Err.	t
wklywg	.0043171	.0061819	0.70
income1	0000765	.0000816	-0.94
year1	.3968824	3.776025	0.11
yearleu	-8.054215	9.480519	-0.85
Iregion 2	1.478219	4.461527	0.33
Iregion 3	4.483258	4.125608	1.09
Iregion 4	1.744582	5.102112	0.34
eu	3.373476	6.771837	0.50
uo	-16.65019	6.527542	-2.55
ou	1.918813	8.183049	0.23
ue	-3.154489	4.654952	-0.68
00	-3.229104	4.527803	-0.71
cons	32.01908	4.795883	6.68

Males, 25-44

Sample Size: 903, R²: 0.0791

hrslyr	Coef.	Std. Err.	t
wklywg	.0031642	.0012862	2.46
Income1	.00002	.0000266	0.75
vear1	,2707766	.8798389	0.31
yearleu	1626306	1.794993	-0.09
Iregion 2	.5856047	1.190406	0.49
Iregion 3	.8826562	1.143245	0.77
Iregion 4	2.40047	1.134098	2.12
eu	7781352	1.306849	-0.60
uo	3576131	1.954736	-0.18
ou	5.241369	2.721743	1.93
ue	-1.460969	1.068431	-1.37
00	-4.419363	1.423668	-3.10
_cons	38.32086	1.269075	30.20

Females, 16-19

hrslyr	Coef.	Std. Err.	t
wklywg	.0318332	.0152918	2.08
income1	0002651	.0002798	-0.95
yearl	-1.910205	3.603338	-0.53
yearleu	-4.421436	9.020607	-0.45
Iregion 2	-2.556349	4.721197	-0.54
Iregion_3	3.720943	5.098094	0.73
Iregion 4	-7.864332	5.19269	-1.51
eu	2.726685	7.266366	0.38
uo	-14.27166	14.24252	-1.00
013	10.10895	11.96857	0.84
ue	-1.591825	4.854526	-0.33
oe	-5.143004	4.202908	-1.22
cons	22.65382	4.322498	5.24

Females, 25-44 Sample Size: 1067, R²: 0.1378

hrslyr	Coef.	Std. Err.	ŧ
wklywg	.0036119	.0009764	3.70
Incomel	.000074	.0000216	3.42
year1	0351319	.7538092	-0.05
year1eu	09722	2.13941	-0.05
Iregion 2	.7228497	1.101261	0.66
Iregion 3	2.583403	.9834005	2.63
Iregion 4	3.565623	1.039286	3.43
eu	3.187543	1.391115	2.25
uo	1,010902	1.636966	0.62
ou	1.016554	2.064601	0.45
ue	3,001258	1.139986	2.63
De	-1.570485	.9410287	-1.67
CODB	28.28632	1.015618	27.85

II. After Transition

Males, 16-19 Sample Size: 130, R²: 0.2053

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0157357	.0056153	2.80
income2	0000844	.0001473	-0.57
year2	6.136616	2.029856	3.02
year2ue	-3.836428	6.02519	-0.64
Iregion 2 2	5345169	2.812413	-0.19
Iregion 2 3	-2.222853	2.550703	-0.87
Iregion 2 4	-,4359318	2.518866	-0.17
eu	7159237	3.5329	-0.20
ua	-1.258966	4.363088	-0.29
ou	-1.818432	3.63482	-0.50
ue	3.499407	4.037401	0.87
eo	-3,393436	2.598393	-1.31
cons	26.08498	2.449786	10,65

Males, 25-44 Sample Size: 899, R²: 0.0848

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0044254	.0014118	3.13
income2	000018	.0000285	-0.63
year2	1.2175	,900567	1.35
year2ue	-4.426998	1.837908	-2.41
Iregion 2 2	.3834415	1.218398	0.31
Iregion 2 3	1.314628	1.16933	1.12
Iregion 2 4	1,571493	1.16822	1.35
eu	-1.277467	1.074498	-1.19
uo	-3.683954	2.505858	-1.47
ou	.2393445	2.416644	0.10
ue	5862599	1.410212	-0.42
eo	-4,220392	1.324645	-3.19
cons	38.90446	1.302372	29.87

Females, 16-19

Sample Size: 87, R²: 0.4226

hrslyr_2	Coef.	Std. Err.	t
wklywg 2	.0505571	.0118207	4.28
1ncome2	,0001742	,0002357	0.74
year2	2.272706	2.054591	1.11
year2ue	1.823241	7.041672	0.26
Iregion 2 2	1.03441	2.789592	0.37
Iregion 2 3	2.380357	2.641782	0.90
Iregion 2 4	1.007146	2.891522	0.35
eu	-1,643991	4.05557	-0.41
uo	.8404791	4.729347	0.16
ou	-3.112533	4.868235	-0.64
ue	6.009419	4.829223	1.24
00	.055331	2.409663	0.02
cons	11.07078	2.781.683	3.98

Females, 25-44 Sample Size: 1104, R²: 0.1456

hrslyr_2	Coef.	Std. Err.	t	
wklywg 2	.000475	.0007026	0.68	
income2	.0001435	.0000193	7.43	
year2	6458902	.7750498	-0.83	
year2ue	.3639881	2.073766	0.18	
Iregion 2 2	-1.221849	1.11285	-1.10	
Iregion_2_3	.8097397	1.013179	0.80	
Iregion 2 4	.367217	1.08502	0.34	
eu	5.703664	1.116466	5.11	
uo	3.903512	2.583345	1.51	
ou	2,50733	2.103619	1.19	
ue	5.030353	1.493588	3.37	
60	1.398652	.8940661	1.56	
_cons	28.01224	1.00616	27.84	