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This summary-for-students presents the claim of some recent analyses of home-based daily urban trips 
made in France or in the USA that the first four moments of travel time, not just the first, matter and that 
travelers react to changed service on road or transit networks by adjusting all four of their constructed 
trip duration moments, including the three higher moments characterizing time unreliability. Sole 
reliance on mean time changes to evaluate improved or worsened trip conditions then short-changes the 
benefit-cost analysis and notably fails to explain fast fill-ups and super-peaks that are part of the 
demanded trip time profile. 
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EXECUTIVE SUMMARY 

This introductory note for senior students summarizes a stream of recent microeconomic analyses of 
surveyed home-based daily urban trips made in France or in the United States of America. 

A Foursome Parcel 
It is claimed in these reports that: (i), in transport demand models, emphasis on the first moment of 

travel time as an explanatory variable, to the exclusion of its next three higher moments, fails to capture 
the true nature of travel time and its full disutility, which also depends on these ignored higher moments 
characterizing the unreliability of travel time; (ii) the first four moments of travel time, the only moments 
of a random variable to have proper names in our daily languages, should be used to specify and define 
endured transport service S and actual trip duration T.  

A New Equation Explaining Constructed Journey Durations 
First, we show that travelers plan their intended trip durations T*, identifiable as observed T plus an 

outcome error, by combining an expected value of endured transport service Sp with a constructed safety 
margin I* offsetting the uncertainty of that transport service. There must then exist, complementing the 
structural trip demand equation, a tandem demand equation for constructed durations proper whereby 
observed duration T is explainable by endured transport service itself as well as other variables. In it, the 
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issue of the existence and nature of the safety margin turns on the elasticity of duration T with respect to 
perceived endured service Sp: the existence of I* is established by an elasticity estimate different from 
unity and its role as offset to the uncertainty of transport service by a value of that estimate smaller than 
unity.  
 
Relative Moment Valuations and Absolute Moment Demands 

That elasticity value secured, one extracts from the flexibly fitted trip duration demand equation 
(formulated in tandem with a trip frequency equation) the relative and absolute effects of explanatory 
variables on duration moments. The former, the empirical marginal rates of substitution among the 
moments, are assumed to reveal relative moment utility valuations; the latter, the absolute impacts of 
service on duration moments, are shown to modify the time profile distribution of trip demand and to 
close the demand model. Notably, elasticities of duration moments with respect to mean service jointly 
imply that service betterment contracts the time profile of demand and leads to higher utility choices due 
not only to shorter mean durations but also to net changes in the upper three unreliability moments of 
duration. We carry out such duration moment analyses by trip purpose (work and shopping), mode (mass 
public transit and car), region (Paris, large US Standard Metropolitan Areas and Metropolitan France) as 
well as sex, and to some extent by socio-cultural group. Key findings of these analyses can be 
summarized under two headings: (A) relative moment valuations; (B) absolute changes in moment 
demands. Consider them in turn.  
 
Bettered or New Infrastructure and its Fast Fill-Ups 

Invariant across explanatory variables, as in Poisson models, the marginal rates of substitution among 
trip duration moments vary, contrary to the constant ones of Poisson models (with unit coefficients of 
variation, for instance). Actual estimates reveal risk aversion in all markets and show that: (a) women 
tend to value the second moment more, and the third less, than men; (b) for work trips, the second 
moment is more valued in large US Standard Metropolitan Areas and in Metropolitan France than in the 
Greater Paris Region, a trade-off found to be socio-culturally sensitive and to imply different local “fast 
fill-up” effects for improved infrastructure; (c) trips to French shopping centers reveal lower valuations of 
reliability moments than do work trips. 
 
Bettered or New Infrastructure and its Traffic Super-Peaks 

With respect to absolute effects of mean travel time service p
eS t  on traveler duration constructs T, 

elasticities clearly imply that, when average service on the network improves (or worsens), (i) not only 
does mean trip duration fall (or rise) significantly less than proportionately (ii) but the three upper 
unreliability moments also adjust, each more or less, and jointly create a complementary net “echo” that 
amplifies the benefits (or costs) of changes in mean chosen duration. This amplified “error of the mean” 
notably implies higher (or lower) super-peaks, the 4th moment of duration acting as a key component of 
the net echo reaction.  
 
Fixed-Form Models Found Wanting 

Maximum Likelihood parameter estimates are obtained from a Box-Cox model enriched to calculate 
adjustments (model fits) of moments higher than the usual first, E(yt), but otherwise unchanged. Popular 
Linear and Log-Log cases are rejected as inferior to flexible Box-Cox estimates, infinitely so for the 
former and uncontrovertibly so for the latter.  
 
INTRODUCTION: IS CONGESTION REALLY JUST MEAN TRAVEL TIME?  
 
The Unease of Feeling Cheated 

There are strong reasons to think that urban transport slowness, defined primarily as long average 
travel time, is in fact much more disliked than “standard” transport Quantity & Mean Travel Time 
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(Q&MTT) model estimates would let on. It is not just that rider altercations aboard transit vehicles and 
driver road rage outbursts cannot be meaningfully linked to modifications of average suffered service run 
time p

eS t , but that Q&MTT specification emphasis on the first moment of travel time et  to the 
exclusion of higher moments clearly fails to capture the true nature and full disutility of travel time, an 
economic modeling shortfall yielding structurally biased net measures of total time disutility, or 
generalized time cost, of dully hated urban travel time. 
 
Average Travel Time Blinkers 

What do models miss? Car riders do dislike crowded roads with low speeds (i.e. congested, 
technically speaking) and mass transit users do shun long in-vehicle times (i.e. slow service   as distinct 
from infrequent or uncomfortably jammed vehicles   ), but their daily grumblings imply stronger 
repulsion than average speed effects in Q&MTT models can account for. This seeming paradox can be 
solved if first-moment-of-travel-time-blinkers cause the unease by ignoring (give or take feeble glimpses 
of wider moment horizons) the unreliability of travel time, a critical part of endured transport service 
characterized by the next three moments of travel duration. 
 
Two Foursomes 

Net responses of this n-tuple of unreliability-defining moments to modified mean service p
eS t  

may in fact be as important as the response of mean duration itself. Blinker removal therefore matters to 
all urban time empirical results. Since Dupuit’s (1844) bridge with an implicitly constant crossing time, 
service S defined as mean time et  has been added to price in lists of demand function regressors but its 
standard error is still not a regular attribute of service S, itself still formally devoid of unambiguous 
skewness or kurtosis dimensions. We criticize wishy-washy two-moment service specifications and 
propose to enrich both mean service and mean trip duration times by their three higher unreliability 
moments. These two foursomes should both be shown to matter, one day. 
 
Starting with Trip Duration Analysis 

But first steps first. We summarize here a first effort to study the effects of changes in mean road or 
mass transit transport service, dubbed endured perceived service p

eS t , on the level and concatenation 
of user-constructed trip duration T moments. The more complete original arguments and demonstrations 
were developed during the last three years to evaluate the user benefits of the Grand Paris Express (GPE) 
automated metro. Under construction since June 2016, it will double the current length of Paris metro 
lines, from 200km to 400km, all the while adding some 68 new stations or interchanges with current 
metro and/or regional rail lines. 
 
Applications to France and to the USA 

On this topic, the core arguments were developed in three series of source documents, all listed in a 
special list of references (cf. Section 9), about home-based daily (quotidian) trips. The first batch (Gaudry 
2015, 2016a, 2016b, 2016c, 2018a) recalls previous uses of the methodology for the analysis of 
constructed moments of road accidents and applies it anew to work trip constructs by car and transit in the 
Greater Paris Region (Île-de-France, with 12 million inhabitants). 

The second effort formalizes the trip duration elasticity test with respect to Sp previously applied and 
carries out new applications to car trips for the same work purpose in Metropolitan France and in US 
Standard Metropolitan Areas (SMA) of more than 3 million inhabitants (Gaudremeau & Gaudry, 2017a). 
The third wave notably adds analyses of car trips for non-work purposes in Metropolitan France 
(Gaudremeau & Gaudry, 2017b) and provides summaries of the work stream since 2015. 
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An Introduction Aimed at Senior Undergraduates 
This introductory paper, with slight modifications to the manuscript (Gaudry, 2018c) and taking after 

a summary paper in French (Gaudry, 2018b), concentrates as much technical material as possible in 
appendices, but without yielding an inch on the substance, namely a theoretical and empirical rejection, as 
inconsistent with the data, of the triplet of inherited penchants of those who are (a) firmly against the 
existence of safety margins; (b) wobbly against use of moments of travel time higher than the second; (c) 
fixed-form lazy or obtuse on the estimation of flexible mathematical regression forms. 
 
Genesis of the Foursome Approach 

We first recall how making sense of the success of an automated Paris metro line required adopting 
new modeling postures to account for the key role of regularity. We then explain the economic and 
econometric approaches taken to explain the asymmetric trip duration data of interest and finally 
summarize key results of the source papers from which we copy and paste extensively without shame or 
quotation marks. 
 
AUTOMATED METRO LINE SUCCESS AND THE ISSUE OF TRAVELER PREFERENCES 
 
Explaining the Success of Paris Metro Line M14 Running Automated Trains 
The Abraham-McFadden RUM Approach and Terminology 

Since Abraham (1961) initiated, and McFadden (CRA, 1972) expanded1 the random utility 
Maximization (RUM) discrete choice approach, Logit attractiveness functions Vi in (1-A) have 
increasingly been called “utility functions”, a terminology also proposed by Rassam et al. (1970, 1971) in 
aggregate mode share applications. 

RATP, the main operator of bus, metro and regional train lines in the Île-de-France (Paris) region, 
which has developed such Logit mode choice models containing in their utility functions level-of-service 
(LOS) variables for public transit (PT) and private car (PC) networks since 1982, recently decided to 
secure LOS variables from the origin-destination (O-D) paths of Logit itinerary choice models. 
A RUM Path Choice Model 

For PT, its chosen RUM discrete multinomial Logit (MNL), considered below as typical of “demand” 
models, has path choice probabilities pi for individual t given by: 
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M path options (e.g. age, sex, or income). This formulation is referred to as a “Box-Tidwell Logit” 
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Yielding a Residual Surprise 
RATP modelers used this data-determined RUM form estimation with sophisticated utility functions 

specifications comprising crowding comfort-weighted in-vehicle time (based on passenger density), walk 
and wait times, transfer penalties, etc. (Leblond & Langlois, 2013). Their model errors, defined by 
differences between actual and assigned flows based on model parameters, surprisingly implied large 
underestimates of ridership on automated line M14. Contrary to classical lines, where link flow errors 
were small, ridership on M14 was underestimated by some 20% during off-peak, and 25% during peak, 
service periods (Prat & Leblond, 2014). An unexpected result: in particular, how could one explain that, 
at peak times, travelers would much rather use a crowded automated line than equally crowded man-
driven ones? Might train automation itself explain this result? 
 
The Impact of Automation on Four Explicit Moments of In-vehicle Travel Time 
A Very Discrete Nanny 

Unfortunately, the scientific transport literature totally ignores the role and value of train service 
automation. The first automated line, London’s Victoria Line, was automated twice: at birth in 1968 and 
again in 2013. Much mileage was made about the impact of its opening on (average) time savings (Foster 
& Beesley, 1963) and about their valuation in terms of the hourly wage rate (Beesley, 1965 or 1970), but 
we could find no discussion of the impact of its automation as such, even when the recent second 
modernization increased train frequency per hour and direction from 27 to 33 trains!  
 
A Foursome of On-Board Time Dimensions 

One way to understand the M14 line error results is to look at the impact of metro line automation on 
the in-vehicle (on-board) time distribution between two representative stations A and B on a recently 
automated Paris metro line Z, shown in Figure 1. In it, transport service, defined solely by 4 measures (or 
notions) applied to in-vehicle time (wait-time is excluded from the calculation), has here no existence 
independently from that of these 4 moments. 
 

FIGURE 1 
MODERNIZATION OF RATP LINE Z OF THE PARIS METRO: 

THE FIRST 4 MOMENTS OF IN-VEHICLE TIME 
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Is there an intuitive view of these 4 moments of a random variable? The first moment, the mean, 
stating location, is associated in common language with fatality and provides the anchor of the next three 
moments, jointly defining service reliability here, characterized by successively higher powers of 
distances between individual observations and the mean (cf. Appendix 1), each result being scaled, or 
“normalized”, by a denominator. The second moment, the standard error, a symmetric measure with 
similar units as the first, is associated with risk in common parlance and the third, skewness, which is 
without units and denotes the direction of the longest tail of the distribution, with prudence. The fourth, 
kurtosis, also without units, is the least intuitive because, associated with temperance in daily language, it 
measures the lack of extreme values, or of acuity, sometimes called “peakedness” (e.g. Kane, 1968), of 
the distribution. We stop at the fourth moment because higher ones, in the case of the strictly positive (or 
of the absolute) value of a normally distributed variable y of interest here, are in fact indeterminate (Berg, 
1988)3 and, perhaps for that reason, without known proper names in European languages. 
 
Moment Performance Equilibria and the Metro as Metronome 

The moment values shown in every one of the 8 Parts of Figure 1 are equilibrium performance 
outcomes resulting from the interaction of train supply with passenger demand flows. And, clearly, the 
most striking impact of train automation is its dramatic impact on distribution acuity: the metro has 
become a metronome. It is this neglected metronomic regularity effect that no doubt primarily explains 
the “overuse” by 20-25% noted above despite the small increase in skewness and the small decrease in 
standard error (also ignored in the RATP model, which accounts for wait time and mean speed) also due 
to automation. Crucially, these first four moments of on-board time must also be relevant for the 
appreciation of road service. 
 
Making Sense of Four Moments: Multiple-Moment Dependent Utility (MMDU) 
Consumer Preferences for the Four Moments 

This led us to the view that all first four moments of transport service matter and that the 4th, 
regularity, may play a role relatively as important in transport time utility as does the third, characterizing 
jackpots, in national lotteries. But this idea that all determinate moments of the distribution as a whole 
matter to utility is not new: it has been stated forcefully time and again by Allais (e.g. 1953, 1987). It 
means that, if one for instance makes a financial investment, one will have an interest at least in: (i) its 
average yield or return ( )e y ; (ii) the standard error of this return ( )y ; (iii) the asymmetry of the return 

( )y , or relative chances of yield increases (upside risk) or decreases (downside risk); (iv) the acuity (or 
kurtosis) of the return ( )y  
 
A New Behavioral Modeling Posture: Multiple-Moment Dependent Utility (MMDU) 

We therefore assume that consumer preferences for distributions are moment dependent, i.e. entirely 
and solely characterized by their empirical moments, and that all first four moments of the travel time 
“lottery” matter to utility, and notably the fourth (regularity) as just noted. How? If people are known to 
correctly identify, even on the basis of few observations, at least distributions as varied of those by Gauss, 
Poisson and Erlang, as well as various power functions (Griffiths & Tenenbaum, 2006), they will a 
fortiori identify mere sequences of moments, and do so more easily than they would identify (now 
superfluous) features of the distributions such as their exact form, perhaps not even unique (Gut, 2002). 
But this Multiple-Moment Dependent Utility (MMDU) view, more than good old bi-moment ( ;e ) 
utility, needs to be completed by linking individual moments to the direction of preference in utility. 
 
Moments of Travel Time and the Direction of Preference 

Whether the prospect is a «good» like financial return or a «bad» like transport time or accident, 
naturally reverses the sign of its marginal effect on utility but not the sign of the MRS between any two 
such effects because we adopt the rule that signs of ( )U moment i  alternate (Scott & Horvath, 1980), 
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as summarized in Table 1 where signs of the first two moments are considered obvious and those of 
higher orders as reasonable. 

 
TABLE 1 

PRESUMED DIRECTION OF PREFERENCE (EFFECTS ON UTILITY) 
OF INCREASES IN MOMENTS OF y 

 
Moment 1st 2nd 3rd 4th  

Prospect: good + - + - 
Prospect: bad - + - + 

 
As a consequence for an investment, increased yield is pleasant (+) but not increased variability (-), 

whereas more asymmetry (less negative on the left or more positive on the right, depending on its nature) 
is also pleasant (+). Analogously, and mutatis mutandis, the occurrence of longer transport times or more 
road crashes is unpleasant (-) and one wishes that the standard variability of this outcome increased (+), 
but not its asymmetry (by becoming less negative or more positive) because higher asymmetry (in 
absolute value) of a bad is unpleasant (-). The signs of kurtosis obey the alternance rule. 
 
“Theory is Good, but it does not Prevent from Existing” (Charcot)4 

And we also assume the direction of preference for that 4th moment, despite again the difficulty of 
proof arising from the logical impossibility to calculate the partial derivative of a utility function with 
respect to, say, the third central or fourth moment without affecting lower order ones (Brockett & Garven, 
1998). Recognizing their point that moment ordering is a necessary but not sufficient condition for an 
ordering of utility (stochastic dominance), moment trade-offs estimates to-day must then come from 
actual behavior, without waiting for proof of their theoretical standing, lest we be compelled to silence on 
the structuring of national lotteries or on the needed valuation of 4-moment transport service. In all cases, 
one is interested in the weight put by consumers on each moment, and in the quantities of each they are 
willing to trade for a unit of another. For this, we need sharpened utility-linkage assumptions.  
 
Attitudes to Risk, Directions of Preference and their Ratios 

Notably, do “riscophobes” and “riscophiles” differ on weight signs? Limiting the field for the 
present to the first three moments of a variable of interest, we estimate below marginal rates of 
substitution (MRS), or trade-offs -[ (moment i)/ (moment j)] and their signs, shown in Table 2. The 
preferences of a risk-averse investor assumed on the first line of Table 1 imply in Table 2 the sign pattern 
of marginal rate of substitution ratios of matrix [A]; the contrasting sign pattern of matrix [B] reveals a 
risk-seeker. Both matrix sets are mathematically coherent and admissible (cf. Tran et al., 2008, Table 6, p. 
36). 

 
TABLE 2 

RISK-AVERSION, RISK-SEEKING, AND EXPECTED SIGNS OF THE MRS 
AMONG THE FIRST 3 MOMENTS 

 
Two sets of marginal rates of substitution among moments: -[ (moment i)/ (moment j)] 

 [A]. Riscophobe  [B]. Riscophile   
i\j e e

e 1 +   1  +  assumed MRS signs 

  1    1   derived MRS signs 

   1    1     
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In Table 2, risk aversion and risk seeking are defined on line e by assuming the existence of certain 
signs for the MRS between the first and higher moments; on line  the MRS between the second and 
third moments are then derived from those of the first line, which explains their common negative value 
in matrices [A] and [B]. The matrices are in effect based on usual preference maps and ignore trade-offs 
equal to 1 or 0 arising from the very unusual horizontal indifference curves in Tobin’s (1965) risk neutral 
formulation. Table 2 then states our key sharpened MMDU behavioral hypotheses. 
 
Searching for Multiple-Moment Transport Service Trade-Off Valuations 

Granted, the literature on automation does not contribute to our search for estimates of the distinct 
weights of the relevant 4 trip time moments presented in Figure 1. But then, what about the general 
literature on trip demand? Limiting ourselves to formulations using distinct moments with own weights, 
we presently see that it is weak in multiple-moment specifications of service by mode and very shy in 
taking into account the uncertainty of that service by a precautionary time margin, let alone an offsetting 
one... 
 
Specification of Suffered Transport Service and of its Moments in Demand Models 
From the First to the Second Moment of Endured Transport Service 

Basic demand theory only uses cost and time features of modes or paths in their utility functions and, 
for scores of years, only their mean values mattered. Neglecting cost, the seminal RUM Abraham-
McFadden discrete choice approach referred to above and independent Logit mode choice practice 
(Warner, 1962) were all concerned only with mean time, as were early utility-linked aggregate Logit 
formulations applied to Channel road path choice (Setec et al., 1959) or to mode choice (Rassam et al., 
op. cit.).  

This changed with Jackson & Jucker (1982) who considered the 2nd moment explicitly and for whom 
p

nS , endured transport service by mode n, is characterized by a weighted combination, in effect a 
vertically concatenated sum, of the mean e  and the standard error  of experienced travel time: 
 

1 ( ) 2 ( )
p

n e n nS r t r t , r1 and r2 denoting weights,  (3-A) 
 
where (our) added bars indicate that, for the user, moments are given and endured  not chosen. As 
already mentioned, we neglect other approaches where the service variable construct p

nS  does not 
maintain distinctly weighted mean and variance (or standard error) terms, for instance in Senna (1994). 
 
More on the Sign of the Variance Term 

Jackson & Jucker (op.cit.) had stated that the sign of r2 was positive (as in the second line of Table 1) 
for risk-averse individuals but not for risk-lovers, a distinction often forgotten in practice, as in the 
Seshadri & Srinivasan (2017) Logit route choice model. Obtaining negative weights for both r1 and r2 
(and a barely significant r2), they claim this result is “logical” and are closed to its implication that the 
602 surveyed Chennai City road users are risk-lovers. With much more credible specifications and a 
sample of 13 723 trips, Prato et al. (2014, Table 2) find instead, for peak and off-peak periods, the three 
expected pairs of significant negative r1 and positive r2 coefficients for their variables: (i) free flow time, 
(ii) congested time, (iii) time “reliability” defined as the difference (P90-P50) between percentiles of the 
travel time distribution. 
 
The Lurking Third Moment 

We are still some distance away from using the third moment, as in  
 

1 ( ) 2 ( ) 3 ( )
p

n e n n nS r t r t r t , with valuation weights 1 2 3( , , )r r r r  (3-B) 
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But perhaps not as much as it might seem because the third moment, of the same sign as the first on line 2 
of Table 1 for risk-averse individuals dominating typical urban markets, as in our results below, has a way 
of barging in surreptitiously, for instance in the result just noted for (P90-P50). 

The modeling posture context is one where trade-offs between the first two moments are long known 
in finance (Tobin, 1957/1958; 1965) and estimation of marginal rates of substitution between them, as 
joint determinants of the demand for asset y, ,k k kX XM XR y X y X XS , is well accepted. 
But higher moments are ignored because of the Brockett-Garven point, noted above, of the logical 
impossibility of their partial derivatives of a utility function containing all 4 first moments. Transport path 
choice authors therefore state dogmatically ab initio that only mean and variance (presumably with 
opposite signs…) determine utility but, in tests, rapidly abandon that untenable assumption, notably by 
replacing mean and variance determinants by the median and a high percentile point PX0 of the time 
distribution (now with the same signs…). In this hocus-pocus game of double substitutions, high (PX0) 
quantiles arguably stand for third moments, with the same sign as the mean. 

Such slippages from the first two clean analytical moments to floating PX0 quantiles, all exact 
multiples of 5 at that, can be found in Logit models of choice between free and tolled California State 
Road 91 lane options. With stated preference data on lane choices, Lam & Small (2001) finally retain the 
median (P50) and the 90th (P90) percentiles of the time distribution; but with revealed preference data on 
the same SR91 lane case, Small et al. (2005) end up with P50 and P80-P50. The clean mean-variance 
model has been transformed into a mean/median vs variance/skewness smörgåsbord of sorts… 

Indeed, these manually chosen percentile point replacements “yield a better fit” than the mean and 
standard error pair; and the estimated signs of, say P50 and P90, coefficients match in practice, implying 
that latent first and third moment effects dominate those of the variance in line 2 of Table 1. Of course, 
such descriptive ad hoc P80 or P90 terms, silent about the form of the distribution, only “work” because 
actual SR91 lane use durations have positively skewed distributions. Making sense of casual PX0 results 
always requires appeal to a missing key latent third moment with the same sign on utility as the first but 
with an import greater than that of the replaced original variance and its sign. 
 
Currently Available Data on Suffered Transport Network Service Moments 

In our empirical part below, we will only use as an explanatory variable of trip duration demand the 
first moment of service p

eS t  for each of the PT or PC trips considered: the construction of multiple-
moment service indicators like (3-B) is under consideration for future research, starting with PT lines. In 
these conditions, we rely instead on the dependent variable to estimate weights and marginal rates of 
substitution among relevant moments of service featured in Figure 1. They will be extracted from the very 
structure of trip durations, an idea now requiring some contextualization from the literature. 
 
TRIP DURATION CONSTRUCT REVELATION OF TIME MOMENT PREFERENCES 
 
Sources of Revealed Moment Preference Extractions 

Preferences with respect to moments of travel time need not be extracted from endured service 
n-tuples like (3-B), concatenations rarely found among explanatory variables of modal choice models like 
(1) which tend to ignore the three higher moments of service time jointly characterizing its reliability. We 
propose their extraction instead from moments of nT , observed trip duration by mode n, defined by the 

difference between given rendezvous rdvH  and chosen departure depH  times. This requires modeling 

journey duration nT . 
 
Trip Duration as Comprising a Precautionary Offset to its Suffered Service Base 

To model duration itself, we adopt an innovative posture. First, travelers are assumed to have 
preferences for the first four empirical moments of travel time, which they can weigh, compare and value 
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directly without any resort to analytical distributions of that travel time. Second, to plan their trip times, 
they evaluate endured network service moments and offset the uncertainty of their own perceived 
valuation of that suffered service base by a palliative safety margin construct congruent to the nature of 
the trip. 
 
Precautionary Palliative Margin Existence and Structure 

The relative importance of this margin in total planned durations, consisting in expected service and 
safety margin components, and the internal structure of such durations, notably vary with journey purpose 
and other factors. Its existence and palliative role need to be established by an elasticity test which opens 
the door to subsequent analyses of its moment structure. Unfamiliar steps are per force involved in this 
innovative process. 
 
The Structure of Planned Trip Time and the New Equation Required to Explain it 
Trip Durations as Endogenous Traveler Constructs 

Contrary to the moments of service pS , moments of intended (unobservable) duration *
nT , or of 

(observed) duration ( )
n

n rdv dep T
T H H u , may be said to consist in traveler constructs that can reveal 

Allais’ valuations of due time moments. Why? We assume, and later test, the view that trip durations do 
not merely consist in an expectation of service pS  but also include a precautionary time margin I* taken 
to offset the uncertainty of the expected transport service. The result, conceivable as a sum, or as a more 
complex interplay of those terms, is a completely endogenous multi-moment cocktail even if T*
f(I*, Sp) contains suffered service with moments that are exogenous to any single traveler. Writing out 

**
nT

T T u , we have: 

 

*
* * *

1 2 3 1 ( 2 ( ) 3 ( ) 1 ( ) 2 ( ) 3 ( )
ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ( ) ( ) ( ) ( ), ( )

n
n n n e n n n e n n nT

r e T r T r T u f r t r t r t r t r t r t  (4-A) 

 
where (i) endogenous values (with circumflex accents) contrast with endured exogenous ones (with bars), 
(ii) stars denote intentions and (iii) the error term *

nT
u is the outcome error arising from the fact that 

observed durations nT  (to be explained)5 differ from unobservable intended durations *
nT . The right-hand 

side of (4-A) is inspired by the distinction (Knight, 1921) between a calculable probabilistic “risk” (here 
Sp) and its “globally perceived uncertainty” (countered here by I*): it combines the risk associated to 

1 ( ) 2 ( ) 3 ( )( )p
n e n n nS r t r t r t , endured service perceived, to the reaction margin intended 

* * *
1 ( 2 ( ) 3 ( )
ˆ ˆ ˆ* ( )e n n nI r t r t r t , a countermeasure offsetting the uncertainty of that service. 

Both I* and T are user-constructed mental moment concatenations. Concatenations, long familiar in 
the joint demand formulations of Demsetz (1970) and Samuelson (1969), here consist in weighted vertical 
sums of time moment demand schedules (cf. Appendix 2). Moments of time have replaced these authors’ 
jointly supplied goods: for the former, hides and meat provided in fixed ratios by steers; for the latter (cf. 
also Samuelson, 1954, 1955), individual schedules of willingness to pay for public goods. In all cases, 
horizontal summation of individuals’ schedules yields market demands.  
 
The Dearth of Margin Variables in Transport Demand Models 

The idea that travelers plan their travel time, reacting to the uncertainty of an expected PT or PC 
service by adding to their expectation of that service Sp an intended precautionary time margin I*, is old: 
Polak (1987) might have stated it, according to Senna (op. cit.). But this would, if true, be in any case 
long after Gaver (1968), Starkie (1971) and Knight (1974) had, to little avail, called for use of margins 
under various garbs (to wit: “head-start”, “idle time”, “safety margin”), the latter pair of authors even 
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adding to the pure unreliability of service reaction a so-called “schedule delay” adjustment to cater to low 
frequency PT line schedule-rendezvous matching quandaries. The idea always implies that, in modal 
demand or choice equations such as (1), the resulting margin appear along the endured service regressor 
variable. If it can be identified, a margin might perhaps be added to service, as often done in models 
explaining for instance trips to the airport of the rail station with a reasonable (but exogenous) 
precautionary term complementing other path or route characteristics. The most sophisticated of all 
multimodal Europe-wide intercity passenger demand models (Mandel, 2014) is a case in point. 
 
The Tandem of Structural Trip Frequency and Trip Duration Demand Equations 

What may however be a newer stand to most readers is the other idea of extracting relevant service 
moment valuations from the dependent variable (4-A) of a distinct equation explaining duration, even 
without estimating the tandem trip demand equation. To see this, rewrite the mode choice equation (1) 
more generally to allow for explanations of demand levels (and not just of choice probabilities) of 
journeys Q and add to the revised formulation an estimable demand equation for their duration D. A 
simplified two-level (Qn)-(Dn) system for a unique mode n serving a single O-D transport link could be: 
 

n
Q  *; ( ); ;

n

c p
n n n n n s QDem q P T I S X A u                                                            (4-B) 

 

nD                        ( ) ; ;
n

c p
n rdv dep n n n s DT H H d P S X u  (4-C) 

 
where previously undefined terms of the simple equation tandem needed to make sense of empirical work 
below are: (i) nP : price of the unique O-D transport mode n; (ii) sX : socioeconomic traveler 
characteristics, such as sex, age, etc.; (iii) A : activities ( 1, ..., , ...,f FA A A ) at the origin O or destination D 

requiring O-D travel, such as work, shopping and personal trips; (iv) 
nDu : modal duration own-equation 

error notably including *
nT

u  from (4-A) and an observed (surveyed) duration measurement error 
nHu . 

This simplified tandem system of two demand equations per mode fully endorses the Starkie-Knight 
critique noted above on the misspecification of mode choice models    that they ignore the existence of *

nI  

margins and treat them as implicitly cancelling out in mode choice models or as comprised in the in  
alternative-specific modal coefficients found in utility functions of type (1-B). In (4-B)-(4-C), the 
palliative nature of time precaution offsets makes them specific to each mode (or route) considered and 
can for instance be used to test the credible observation made by Hendrickson & Plank (1984) that 
departure time to work decisions are more flexible than mode choice (or frequency) decisions. 
 
Duration vs Departure Time Modeling 

The dependent variable in (4-C) differs from that of departure time models associated principally with 
Vickrey’s (1969) formulation. Gaver (op.cit.) had made departure time depend on the asymmetry of costs 
associated with early, as opposed to late, arrival at destination and on the distribution of route delay. 
Vickrey replaced that distribution by an exogenously given preferred arrival time Hpref, a detour 
tantamount to positing this duration demand: 
 

( ) ( ) ( )( ) , ( , ), ( , )pref dep n pref e n e n pref e n pref prefH H d t a t H r t H u  (4-D) 

 
where the terms (.)a  and (.)r  are associated with early or later arrival costs and Hpref is an unobserved 
fixed (non stochastic) deus ex machina which displaces the departure time pickle to that of making sense 
of Hpref, itself now begging for an explanation as a new endogenous system variable. It requires a 
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supplementary equation, as in Koster et al. (2011) who then have to explain rdv prefH H  as well. This 
costly dilatory detour is avoided with (4-C) where the unknown asymmetric costs of early and late arrival 
may remain implicit and are subsumed within moment level and valuation time constructs. 
 
Duration Equation Statistics of Particular Interest for the MMDU Approach 
Anticipated Output Requirements for the Future Regression Method 

Consider in turn three statistics needed from regression estimates of (4-C) to test our approach: (i) 
elasticities of duration ( , )ky X  and (iii) marginal rates of substitution , sm mMRS among moments of 

duration, but also (ii) marginal rates of substitution ,kX XMRS  among explanatory variables andkX X . 
i. Elasticity of demand of one or many moments of duration. We are interested in the effects 

of any explanatory variable kX  on duration y d  and on its moments, effects measured 
either absolutely: 

 

( ) ( ) ( )
ˆ ˆ ˆ ˆ; ; ;k e n k n k n kd X d X d X d X  (5-A) 

 
or as elasticities, listed in Table 3 inspired by a survey of elasticity notions (Dagenais et al., 
1987): 

 
TABLE 3 

FOUR NOTIONS OF THE POINT ELASTICITY  OF y 
WITH RESPECT TO A CONTINUOUS VARIABLE kX  

 
Name of elasticity concept with respect to Xk Point elasticity measure* for continuous variable Xk 

1. Sample elasticity of y  ( , )s k
k

k

Xyy X
X y

 

2. Elasticity of e(y) 
( )( , )

( )
e k

k
k

Xe yy X
X e y

 

3. Elasticity of (y) 
( )( , )

( )
k

k
k

Xyy X
X y

 

4. Elasticity of (y) 
( )( , )

( )
k

k
k

Xyy X
X y

 

(*) where simplified writing ignores indications that all measures have to be evaluated at some sample point t. 
For comparable expressions used in source papers if the variable is not continuous but a dummy, see App. 
3. 

 
Elasticity notions differ in Table 3. The “sample” elasticity ignores that the relationship explaining y 

contains a random residual but other notions are “strict” and recognize the stochastic nature of y.  
The sample notion arose in France in railway courses at the École Nationale des Ponts et Chaussées 

(ENPC) where it casually6 appears in Sévène (1877) or Tarvernier (1889); a former Austrian student even 
uses its mathematical formulation in a study of rail costs (Nördling, 1886).  

By contrast, all strict notions are rarely used, except for the second in nonlinear regression models, 
despite Goldberger’s (1968) known proof that elasticities of the sample, the expected value and the 
median of y are identical in a logarithmic model, yielding for each and for any observations t: 
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( ) ( )( , ) ( , ) ( , )
( ) ( )

s e mt kt t kt t kt
t kt t kt t kt k

kt t kt t kt t

y X E y X m y Xy X y X y X
X y X E y X m y

 (5-B) 

 
In the case of our explanatory variable p

nS , or of its components in (4-C), the effects are particularly 
interesting because: 

a) values different from unity, i.e. ( , ) 1c p
n nT S , demonstrate that duration *c p

n n nT I S  cannot 
be reduced to expected service but includes a precautionary margin  otherwise the effects 
would be strictly proportional, i.e. ( , ) 1c p

n nT S   and the regression of y on p
nS  would not 

be legitimate, in effect regressing p
nS  on itself (and other kX ). Table 7 formalizes this test 

below; 
b) the strict notions together account for the impact of transport service on the time profile of 

demand for duration, a feedback which, eventually completed by changes in the fourth 
moment, closes the Q-D tandem of traffic frequency and duration demand models (4-B)-(4-
C); 

ii. Said marginal rates of substitution between explanatory variables. With respect to relative 
effects between explanatory variables, it is always relevant to compute the usual ratios of 
marginal effects ,k k kX XM XR y X y X XS  but our quantitative model must 

also allow for the ratios of effects of any kX  and X  pair (components of p
nS  included) with 

respect to moments of y, namely: 
 

,
( ) ( ) ( )
( ) ( ) ( )kX X

k k k k

k

E y X y X y X y X X
E y X y X y X

M
y X

RS
X

 (5-C) 

 
which have the surprising property that the ratio kX X , for any pair of variables, is equal7 

for all moments of y and for the simple “sample” formula ky X y X  that altogether 

ignores the error term distribution. This equality property, valid unless variables X  and kX  
are also used to explain heteroskedasticity of residual 

nDu  in (4-C), as noted in Tran et al. 
(op.cit.), provides below the basis of a statement concerning the robustness of our MRS 
estimates to potential collinearity; 

iii. Said marginal rates of substitution among moments of duration. After verification that 
( , ) 1c p

n nT S , one might be interested in extracting the , sm mMRS  among the moments of 

duration c
nT . Explicitly, with the first three moments considered, there will be only three 

MRS among them (their inverses being counted as identical) generated by the following 
expression which interestingly holds for all kX  even if, in (5-C), 

[ ( . ( )) / ] [ ( . ( )) / ]kmom i y X mom i y X :  
 

( ( )) ( ( )) ( ( )) ( ( ))k kmoment i y X moment j y X moment i y moment j y , kX  (5-D) 
 

or, more explicitly, with the first MRS devoid of units but not the next two MRS: 
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, ( ) ( ) ( )
( ) ( ) ( )

em m t t kt t t

t t kt t t

e y e y X e y XMRS
y y X y X

(5-D.1)

, ( ) ( ) ( )
( ) ( ) ( )

em m t t kt t t

t t kt t t

e y e y X e y XMRS
y y X y X

(5-D.2)

, ( ) ( ) ( )
( ) ( ) ( )

m m t t kt t t

t t kt t t

y y X y XMRS
y y X y X

(5-D.3)

From Mere Ratios of Partial Derivatives to Real Marginal Rates of Substitution 
Formally speaking, substitution involves the sacrifice of a unit of X1 traded against a unit of X2 while 

maintaining the value of their combination constant. It is the slope of an isoquant, defined as minus the 
ratio of partial derivatives of the output or utility quantity held constant with respect to X1 and X2 (Allen, 
1968, p. 42), as noted in the header of Table 2 and incorporated in its values. 

Note that the above expressions (5-C) and (5-D), if used for such trades among moments of the 
dependent variable, neglect that required negative sign and keep the ratios of partial derivatives as they 
are in order to relate them with greater ease to moment utility impacts in Tables 1. But Table 2 takes the 
needed negative sign into account, as will future tables of results on MRS among moments.  

Skipping the Toolbox 
We now turn to the regression method adopted to secure all those results. Contrary to this section, 

which used only elementary calculus, the next one requires notions not all covered in first quantitative 
method courses. It may be skipped by those unfamiliar with Maximum likelihood and nonlinear 
regression, as long as they keep in mind that Box-Cox transformations defined in (2), with actual values 
determined by the data, are important because of their flexibility (and not only due to the inclusion of 
linear and logarithmic cases), which plays a key role in Section 5. 

A PLURAL-FIT SKEWNESS-INCLUSIVE MOMENT OUTCOME REGRESSION 

Rosett-Nelson, or Box-Cox, Regression Extended Beyond First Moment Fit 
We adopt a Rosett-Nelson (1975) model with Gauss-distributed8 

 errors tw , collapsing to the Box-Cox model in the absence of limit observations on y. This 

familiar model can notably yield an asymmetrically fitted ( )tE y  that we will need because realized trip 
durations, as in Figures 1, 3 or 4, always obtain distributions that are skewed to the right, and are never 
symmetric, a seemingly universal phenomenon independent from mode, purpose, sex and socio-economic 
standing of the travelers: 

( ) ( )
0 1

, 0, 0y k
k K

t k kt t t ktk
y X w y X , t=1, …, T, (6-A) 

with9, as in (2) 

( ) ( ) 1 , 0,

ln ( ) , 0,

v

v vt v
vt

vt

X
X

X
(6-B)

and yielding fitted values of the first three moments of outcomes 
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( ) ( )

( ) ( )
( ) ( ) ( ) ( ) , ( and 0)t t

t t

w w

t tw w
E y w dw y w dw w dw (6-C)

2 22( ) ( ) ( ) ( ) ( )t t t t t ty Var y E y E y E y E y (6-D)

23 2

3
3 3

( ) ( ) 3 ( ) 2 ( )
( )

t t t t

t

E y E y E y E yey , with ( )te E y ;  (6-E) 

where, for powers r = 1,2,3, one has: 

because, for (6-C), it has been assumed that observed yt is, as in a two-limit Tobit model, censured both 
upwards and downwards:   yt   where   and   denote the strictly positive limits assumed identical 
for all observations10. Note that the measure of 1st moment fit calculated for (6-A) with a normally 
distributed error is then indeed (6-C) and not the following unrolled version of (6-A): 

1
ˆˆ( )

0
ˆ ˆ ˆˆ 1 k y

t y k ktk
y X (6-G)

Measure (6-C) is preferred, even in the logarithmic Case 4 ( 0y ) of Table 4, when it collapses to: 

( )ˆ ˆ( ) exp h

t k ktk
E y k X (6-H)

the particulars of which require an unbiased estimate of k̂ , the sample mean of the log-normal random 
variable exp(wt) for the sample in question. But estimation of k̂  from the Maximum Likelihood
adjustment raises further issues that make calculation of expression (6-C) preferable to that of (6-H).  

Satisficing our Modeling Requirements 
For linear and nonlinear cases to be reasonably nested in (6-A), it is assumed that ( )tE y  in (6-C) is 

large enough relative to w  (Davidson & MacKinnon, 1985, p. 501), a fair hypothesis with quotidian trip 
data (cf. the table in Figure 3). This model then allows for estimation of the derivatives of the first three 
moments of yt with respect to any ktX , as summarized in Table 4 (the analytical derivatives 

kt

e
XD , 

ktXD , 

ktXD  are found in Appendix 4), and of all elasticity or MRS impacts in (5-A) and (5-B), be they strict or 

sample such as 1k

t kt k kty X X . 
The only originality of Table 4 (and of Appendix 4) is to present an enrichment to higher moments of 

usual practice typically focused solely on calculation of the derivative of the first moment. But this 

when 0 0 and v  

( )r
tE y  =

( )

( )
( ) ( )t

t

w r r
t w

y w dw w dw  
does 
not 
exis

t 

= ( )r
ty w dw = ( )

t

r
tw

y w dw

if 0y 0y 0y

(6- ) 
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extension to higher moment fits than the first adds nothing to, and subtracts nothing from, the original 
Box-Cox model. In particular, it does not preclude further enrichment with 

ktXD , the partial derivative of 
the 4th moment of yt with respect to Xkt, in view of the possibilities evoked in Endnote 3. 

 
TABLE 4 

DERIVATIVES OF MOMENTS OF y EXPLAINED BY BOX-COX REGRESSION 
WITH GAUSS-LAPLACE ERRORS 

 

Case Domain of y Box-Cox 
power of y 

( )
kt

e t
X

kt

E yD
X

 ( )
kt

t
X

kt

yD
X

 ( )
kt

t
X

kt

yD
X

 

1 ty  (OLS)11 
 

1y  
 0 0 

2 

0ty  

  0 
3 0y     
4 0y     
5 0y     

= the partial derivative of the moment of y in question with respect to Xkt is not zero.
 

Case 1 is well known to all students: we have [ ty ] with Gaussian errors where y is 

explained linearly [implicitly with ( 1y )] by OLS and changes of Xk have no effect on ( )ty  and 

( )ty , as indicated by the null values. But it is easy to forget that, in Case 2 with ( 0ty ) as required by 

the BCT on y, ( )ty  is sensitive to changes in Xk (symmetry of Gaussian errors remaining) despite the 
linearity of y. More generally, when, as in Cases 3, 4, and 5, the nonlinearity of y produces a variable with 
an asymmetric distribution, all moments of y react to changes in Xk, a standard and natural property of 
models that are “nonlinear in y” (there are many other than the Box-Cox model) and which we use to 
extract the freely determined MRS among its moments. In particular, here we in principle have 

2( ( )) ( ( )) 1E y y  and can always test the Poisson equality restriction12, for instance rejected in road 
accident data tests, using the above algorithm, to be recalled presently. 

The idea that preferences for distributions characterized solely by their moments can extend the 
mean-variance approach, and the need to enrich a Box-Cox algorithm until then limited to calculation of 
1st moment fit to higher moment fits and to the extraction of MRS among the first 3 moments of y, were 
prompted by the serendipitous reading of Allais (1987) in 1988. It led to a research proposal in 1989 and 
to a report of first results to the funding agency (FCAR, 1991) on an exploratory 2-moment application to 
monthly road accident frequencies by severity category in Quebec: it yielded results clearly inconsistent 
with the Poisson restrictions on moments of y (Gaudry, 1997, 2000). 
 
Road Speed Choice Precedents 

Moments of road speed, and consequently of accident frequencies by severity category, can indeed be 
said to be endogenously chosen and concatenated, just like those of trip durations, and there is no need to 
limit oneself to the first moment of speed choice, as in Ashenfelter & Greenstone (2004). Simultaneously 
recognizing that speed variance also matters to accident risk, as Lave (1985) had noted, they do not dare 
consider it as also properly endogenous. It is as if drivers had blinkers with preferences limited to picking 
only mean speed and its accident risk, higher moments of speed then just floating above the first, but 
somehow unexplainable and irrelevant. 
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By contrast, extensive applications of our multi-moment methodology to Quebec and West Germany, 
funded again by FCAR and by the Deutsche Forschungs-Gemeinschaft (DFG), yielded 3-moment tables 
of MRS (Blum & Gaudry, 2000), of the same format as Table 9 below, showing almost identical MRS 
among moments in the two regions. Later, revealed values of a statistical life were derived from those 
trade-offs among accidents frequencies of different severity and cost categories (Gaudry, 2006). At the 
time, the 4th moment of road safety indicators was not of concern or examined. 

The Incontrovertible Superiority of the Box-Cox Power over the Simple Power Model 
The likelihood for the above model (6-A) and (6-B), as in Box & Cox (op. cit.), is well known to be: 

2T
t t
22

t 1 w tw

w w1 exp
2 y2

(6-I)

where 1y

t t tu / y y  denotes the Jacobian of the transformation from the wt to the observed yt, giving 
rise to a natural question concerning its advantages in comparison with an alternative formulation for the 
apparently less complicated simple power model 

0 1
y k

k K
t k kt tk

y X u (7-A)

And reasons for choosing BCT powers (6-A) over simple powers (7-A) are certainly of general interest. 
i. Continuity at 0 or degeneracy? The BCT specification is continuous at 0 and nests both Case 2

(linear) and Case 4 (logarithmic) of Table 4. On this continuity point, the simple power model is
woefully inadequate: not only does 0  make all variables tend to 1, but estimation admits

the corresponding degenerate “black hole” solution 0y k , the avoidance of which 

requires estimation under parameter constraints. Moreover, it can be shown that the ˆ
y  of (6-A)

is interpretable as a non-degenerate estimate of ˆ
y  in (7-A) because of BCT invariance to a 

power transformation of y even in the absence of an intercept 0  in (6-A), a polite demonstration 
inviting to abandon simple power models (Gaudry & Laferrière, 1989), as we did in 1976.  
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FIGURE 2 
ILLUSTRATED MAINTENANCE OF THE ORDER OF VALUES 

AND OF THE CONTINUITY AT 0, OF THE BCT 

ii. Maintenance or risk of inversion of the order of the data? Another risk, never mentioned, is that
simple powers do not maintain the order of the data, contrary to Box-Cox transformations, as
illustrated in Figure 2 (Johnston, 1984, p. 63) where the values 10 and e = 2,84128 are

transformed in three ways: in (a) by a simple power y , which implies an inversion of values as

one goes through point (0,1); in (b) by /y , which maintains the order but causes

discontinuities at 0 ; in (c) by ( 1) /y , which preserves both continuity and the order of

data values. Estimates of simple powers y  therefore require an ex post verification of the order
of data for all transformed variables, in both their sample and forecast domains, if weird
situations are to be avoided.

iii. Legibility of signs of derivatives, marginal rates of substitution and elasticities. As seen in Cell

1.A of Table 5, an advantage of a BCT applied to kX  is that its own sign has no effect on the sign

of the derivative with respect to that variable, which only depends on that of k . With simple 

powers, the direction of the effect of a change in kX  depends on the signs of the three parameters 

in k k y ; and the same holds for the sign of the ordinary elasticity in 3.B. Legibility is not 
better for marginal rates of substitution, the signs of which depend on four parameters in 

k k  because the sign of the ratio of transformed variables is positive, as it is in all cells of 
Column A of Table 5. The legibility of signs is apparently always higher with BCT than with 
simple powers. 
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TABLE 5 
SIGNS OF STATISTICS DERIVED FROM POWER MODELS: 

BOX-COX VS SIMPLE POWERS 

Definitions of statistics derived from models estimated with: A. Box-Cox B. Simple

1. Partial derivative 
k

y
X

1

1

k

y

k
k

X
y

1

1

k

y

k k k

y

X
y

2. 
Marginal rate of substitution 

(MRS) between kX  and X  
ky X

y X

1

1

k
k kX

X 1

1k
k k kX

X

3. 
Sample elasticity 

(i.e. ordinary) ( , )ky X  
k

k

Xy
X y

k

y

k
k

X
y

k

y

k k k

y

X
y

All reasons just stated to prefer BCT also hold for the following “inverted” simple power model:  

1

0
k y

k ktkt tXy (7-B)

where direct non linear estimation can yield , the Constant Elasticity of Substitution (CES) parameter, 
if and when it is recovered from ( )f  or from another function relating  to . 

Form and the Randomisation of Regression Coefficients 
The BCT is a local nonlinear approximation replaceable by splines (Rich & Mabit, 2016; Rich, 2018) 

or eventually by the Fourier transform (Gallant, 1981). But not by the randomization of  coefficients, 
an entirely distinct procedure seemingly successful because it mimics curvature, but at the cost of 
confusing form and randomness, as demonstrated by Orro et al. (2005, 2010) in multivariate Monte Carlo 
tests. 

Randomness, an old innovation in classical regression models (Swamy, 1970; Johnson, 1977, 1978), 
including transportation ones (Hensher & Johnson, 1979) where the form implication was noted early 
(Johnson, 1979), appeared in Logit models under the “Mixed” label, held capable of approximating any 
Random Utility Model (e.g. McFadden & Train, 2000), a stunning claim in view of Orro’s work. 

In addition to the Monte Carlo results, just noted, showing that form and randomness are distinct 
notions, atomisation of segments effected by randomisation of coefficients poses problems of its own 
because distributions of the  are all strictly unknown. Moreover, in “Mixed Logit” models, the 
information matrix does not have a closed form, which implies an undefined efficiency bound (Cirillo, 
2005). In spite of this built-in design ignorance and obscurity, Lapparent et al. (2009) have shown with 
data on three countries that BCT on Time, Cost and Access time were generally different from both 0 and 
1, at least with their own assumed  distributions, a partial empirical validation of the above Monte 
Carlo proofs that “mixed” can just mean “mixed up” because, if  regression coefficients can have 
distributions, then  form parameters obviously can have them as well! 
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DATA, MODELS AND RESULTS: MARGINS, RELIABILITY ECHOES AND VALUATIONS 

The Nature of Available American and French Surveys 
Home-based Trips in Three Publicly Available Databases 

To analyze durations, we draw individual home-based trips from 3 surveys: the US Nationwide 
Personal Transportation Survey (NPTS 2009, of 150 000 households), limiting ourselves to the large 
standard metropolitan areas (listed in Appendix 5); the Enquête globale transport (EGT 2010, of 18 000 
households) of the Greater Paris Region (Île-de-France, 12M inhabitants); and the Enquête nationale 
transports et déplacements (ENTD 2008, of 22 200 households) of Metropolitan France (63M 
inhabitants). 

Survey Information and Sample Size Limitations 
Durations of 7h30-9h30 morning peak work trips (shown in Figure 3) will be studied comparatively 

in the 3 regions, but those of 10h00-18h00 car trips to shopping centers will be studied only in 
Metropolitan France (despite the relatively small samples shown in Table 4), due primarily to the fact 
that, in the NPTS 2009 Survey, the variable Great Circle Distance, required as the key instrument for the 
construction of the reference road network service variable Sp below for use in (8-B), exists only for work 
trips. 

The Approach Adopted with Strictly Comparable Home-Based Survey Trip 

In all of these surveys, rendezvous time rdvH  proposed in our duration demand equation (4-C) is

unknown and must be replaced by arrival time arrH  at the activity in question. We per force assume:

ˆ ˆˆ ˆ ˆ ˆ( ); ( ); ( ) ( ); ( ); ( )c c c c c c
n n n n n n

arrrdv dep depH H H H
e T T T e T T T (8-A)

i.e. that trip duration moments of interest are approximately the same, a hypothesis clearly testable in the
future with datasets containing both rendezvous and arrival times by activity (trip purpose).
Summary of Economic and Econometric Specifications

The most extensive specifications, developed originally in source research reports III and IV for the 
Greater Paris Region, had 29 variables for car trip equations and 21 for transit trip equations. They can be 
represented by: 

( )( ) Tc
nT =f [(Day of week, Direction, Parking type); ( )S

nS ; (
( )AgeAge , ( )IncomeIncome , etc.)], (8-B) 

as indicated in Table 6 where 4 continuous variables are to be transformed by BCT and all other variables 
but one (the number of persons in the household) are dummies. As Service Sp was the only highly 
significant explanatory variable and other variables were never significant (cf. regression details in source 
paper V), but for two rare exceptions (free street parking and driving towards the Paris city centre), the 
more recent specifications for the US and France were drastically pared down, after further tests had 
confirmed the core Greater Paris Region finding  that additional variables contributed almost nothing to 
the explanation of chosen durations after service had been taken into account.  
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FIGURE 3 
WORK TRIP TIME BY MASS TRANSIT (PT) OR PRIVATE CAR (PC) 

IN PARIS, THE USA AND FRANCE 
 

 
 

For transit trips in the Greater Paris Region, we use for Sp an exogenous Logsum measure (or, rather 
better, its antilog subjected to a Box-Cox transformation) of multiple-path PT service extracted from the 
RATP Global-9 demand model. Its refined publicly documented Logit path choice model notably 
includes Box-Cox transformed in-vehicle time (Leblond & Langlois, op. cit.), weighted by tested comfort 
functions based on passenger densities, and dummy variables by type of line (Prat & Leblond, op. cit.) 
capturing residual effects, or “attitudes” to them as proposed in Gaudry & Lapparent (2015). 

For car trips in the Greater Paris Region, the network service variable Sp is defined by a Wardrop user 
equilibrium assignment time, an exogenous measure available per O-D. For France and the USA, 
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exogeneity required building a reference time equal to Great Circle Distance (DGCD) divided by mean 
speed on the network Vnetwork t constructed from declared Duration and calculated Distance for trip t. 
 

 (8-C) 

 
In principle, this complex reference car service time variable is both exogenous to the explanation of 

declared car trip durations and shorter than durations actually incurred: (a) Great Circle Distance is itself 
an instrument necessarily exogenous and shorter than any shortest path O-D distance; (b) also, observed 
O-D speed for any individual’s trip is certainly exogenous at congested times but perhaps less so at other 
times. To verify this exogeneity, we included in the regression explanation of US trip durations the local 
fuel price P on the day of the surveyed trip. Given that the car mode has been chosen, that price should 
not be significant when congestion reigns because differences in driving style then have little room for 
expression, but could become more significant at other times if and where free flow uncongested 
conditions prevailed on some links of a path. As it turns out, the coefficient of that daily price variable is 
never even barely significantly different from 0, as anticipated. 

 
TABLE 6 

EXPLANATORY VARIABLES OF TRIP DURATIONS 
BY REGION AND ACTIVITY (TRIP PURPOSE) 

 

 
 
Estimation of BCT Models of Particular Interest 

For each market, 4 distinct BCT specifications were tested: the Linear, corresponding to Case 2 in 

Table 4; the Logarithmic, corresponding to Case 4; the BCT, with k  applied to each of duration c
nT  and 

service p
nS  (Case 3); an enriched Case 3 (Paris trips only), with BCT also applied to age and household 

income (Case 3+):  
 

 
 
(8-D) 

 
 

All specifications were tested to ensure that a global maximum of the Log-Likelihood of (6-I) had 
been found: it has long been known in practice, and more recently studied in theory (Kouider & Chen, 
1995), that the presence of BCT in (6-I) can generate local maxima, especially with 2 or more BCT. 
Belsley-Welsh-Kuh condition indices (Belsley et al., 1980), as re-interpreted by Erkel-Rousse (1995), 
were extensively used to guard against collinearity, as described in detail in source papers II and III, with 
a view to isolating the required specific effects of the Service variable on duration. Property (5-C) 
guarantees in any case the robustness of estimates of the also needed MRS among moments. 
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Neither Linear, Nor Logarithmic but Box-Cox Optimal Forms with 0,05 0,60  
All tests showed that Case 2 was always infinitely dominated by Case 4 and that Case 3+ led to linear 

forms for age (and for income, when present). Also, Case 3 gave significantly better fits than Case 4 
everywhere except with the very small samples shown in Figure 4. Forthcoming tables therefore 
document only Case 3 results (and Case 4 Log Likelihood values in Table 8 for PC trip durations and 
Table 10 for PT trip durations), but detailed information on all 4 cases can be found in source reports. 
 
Meaning of Estimated BCT Parameter Values 

Tables 8 and 10 show that a priori fixation on Linear or Log-Log forms would have been extremely 
damaging, as found long ago in trip demand and mode choice models (Gaudry & Wills, 1978) and 
confirmed more recently in a survey of tens of BCT applications to mode choice worldwide (Gaudry, 
2010). But two further comments should be made on the exact values of BCT found for all work trip 
markets (drive alone in Table 8 and mass transit in Table 10), because they signal very significant 
differences in the shapes of marginal disutility curves: 

i. women’s BCT for duration and service are roughly twice the size of men’s. These 
differences are statistically significant, as demonstrated by losses in Log-Likelihood from re-
estimation of each equation (variants 35 vs 22 of T.8; 31 vs 17 of T.10) with the other’s 
optimal values. In addition, unconditional t-tests with respect to 0 and 1 confirmed that all 
BCT values (in the original and restricted re-estimations) differed from 0 and 1. The results 
of these re-estimations are not shown; 

ii. public transit vs car BCT. Comparing the first two columns of Table 8 with those of Table 
10, BCT values for PT are roughly twice the size of PC values for Duration and half of their 
size for Service. This intermodal difference was established by the same cross-constrained re-
estimation method (variants 17 vs 22; 31 vs 35; results not shown) used to establish 
differences between men and women. 

 
Establishing the Existence and Palliative Nature of the Safety Margin 

It would not suffice here to state that precautionary margins were long “implicitly lived but not 
explicitly known”, as famously stated by Blondel (1904, p. 437) about certain doctrinal developments. 
How then is it possible to be in fact certain that properly observed durations do really contain margins, as 
claimed, so that their extracted moments are not just those of endured route service? A reasonable 
demonstration is available by an analysis of the elasticity of duration (see its possible definitions in Table 
3) with respect to endured network service. This elasticity estimate is the foundation of the model, an 
argument summarized in Table 7 to which one might add the following comments: 

i. Nonunitary elasticity of duration with respect to endured service as a test of the existence 

of the safety margin. Econometric model (8-B) is legitimate if ( , ) 1c p
n nT S : otherwise, it 

amounts to a regression of service on itself (and on other variables X), which is of little 

interest beyond that very point. Were the units of c
nT  and p

nS  identical, one could perhaps 
imagine a test of the value of the regression coefficient but, as units differ and both variables 
are subjected to BCT, a test of the unitary value of the elasticity is much preferable, even if it 
remains intuitive. Here, it is carried out at sample means between the first moments of the 
duration and service variables in question. 

ii. The internal structure of compunction time c
nT  conditional to a non-unitary elasticity. In 

the source papers, c
nT  is called “compunction time” because it is assumed to combine 

expected service and offsetting margin time “punctions”. Once it is established that 
( , ) 1c p

n nT S , can anything interesting then be said about the internal structure of c
nT ? If 
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ˆ 0y  and one further assumes that * p
n nI S� , it is possible to calculate *( , )p

n nI S  from 

ˆ( , ) 1c p
n nT S  because the elasticity of a product is the sum of the elasticities of its 

components. More generally, ˆ 0y  and nothing can be said about the internal structure of
c

nT . But note that acceptance of ˆ 1 does not require to take a position on whether the 
existing safety margin punction is multiplicative, additive (as many think and build into 
models) or entirely something else such as ( )( ) ( )( )*

1 2( ) ( ) ( ) yy SIc c
n n nT I S .

TABLE 7 
SAFETY MARGIN EXISTENCE TEST BASED ON 

A UNITARY ELASTICITY OF DURATION W.R.T. ENDURED SERVICE 

iii. The palliative interpretation of *
nI  when ˆ 1 . One expects ˆ 1  because *

nI  is 

understood to compensate for the uncertainty of p
nS : service improvements then reduce the 

safety margin, and the reverse occurs when service worsens. In the particular case of ˆ 0y ,

the offsetting (negative) role of *
nI  directly follows from *( , )p

n nI S = ˆ 1 when ˆ 1 . 
iv. The link between a palliative margin and the “reliability echo”. This palliative role of the

safety margin is at the root of the “reliability echo” documented below. The echo, defined by
the sum of adjustments of the 2nd, 3rd and 4th reliability moments, as measured by their
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elasticities with respect to endured service p
nS , turns out to always amplify adjustments of the 

1st moment: the echo always acts as a net complement to the adjustment of the mean duration 
to changes in suffered service.  

Car Trip Durations: Unit Elasticity Tests, Moment Demand Elasticities and MRS 
The car work trip data to be analyzed are those shown in Figure 3 for the 3 regions of interest; and, 

despite the relatively small size of the samples, we will also use the car shopping trip data of Figure 4.  

TABLE 8 
ELASTICITIES OF PC TRIP DURATION W.R.T. MEAN SERVICE 

AND STUDENT’S t OF PARAMETERS, CASE 3 OF (8-D) 

Establishing the Existence of the Precautionary Palliative Time Margin 
Table 8 presents values of the two estimated BCT and of the elasticity of duration with respect to 

mean service, as well as the t-statistics of the associated BCT and of the service regression parameters. 
The latter are conditional on BCT estimates and consequently invariant to units of measurement of the 
regressors (Spitzer, 1984; Dagenais & Dufour, 1994).  

In all variants, the sample measure and the strict first moment measure of the elasticity of duration 
with respect to mean service clearly differ from 1 and, in view of the extremely high t-statistics, are 
indeed all much smaller than 1, thereby passing the model validity test defined in Table 7. To verify this 
for the highest values (0,87 and 0,91 for the USA), consult their detailed analysis in Appendix 6. 
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Elasticities of the Moments of Duration with respect to Endured Service and Closure of the Transport 
Model 

The feedback of endured service on the time profile of trip demand duration itself, which closes the 
demand model, can be calculated with the 3 strict moment elasticities highlighted in green in Table 8. 

Improved service translates into minus these elasticity values and leads, for all regions and both sexes, 
to the creation of super-peaks (increased kurtosis) because the only mitigating reaction, that of 
asymmetry, is weak (but less in women than in men) and cannot compensate for the much stronger 
reduced mean and standard error (seemingly fast fill-up) effects. The consequence is in all markets an 
increased concentration or acuity of the time profile of demand during the period considered, namely:  
 

( ( ), ) ( ( ), ) ( ( ), ) ( )n k n k n k ne Dur X Dur X Dur X SUPERPEAK of kurtosis Dur  (9-A) 
 
The Reliability Echo, a Function of the Weak Elasticity of Asymmetry 

The size of the elasticity of asymmetry, always producing a relatively small counter effect as 
compared to those of the second moment, makes possible the existence of what we have called a 
“reliability echo”. For work trips, as well as for shopping centre trips (shown in Table 10), net changes in 
the three reliability moments (the 4th, which can be qualitatively estimated or guessed, included) caused 
by changes in mean service time always augment the utility gains or losses associated with changes in 
mean time. This would not be the case if the elasticity of asymmetry were much higher in absolute value: 
the sign of the net effect on utility of changes in reliability moments could then easily be indeterminate. 

Because of this echo, it would be incorrect to evaluate, for instance, the utility of the massive 
investment in major urban roads and interstate highway urban portions effected in the US between NPTS 
dates of 1998 and 2009 by focusing only on the lower average speeds achieved in the largest SMA: lower 
average speeds are compatible with hugely higher overall unreliability characterized by increased 
standard error combined to decreased kurtosis (flatter super-peaks), both only very partially offset by 
lower asymmetry. Road works change mean travel time, which causes restructuration of the time profiles 
of demand through adjustments of the safety margins embodied in durations choices. 

If mean travel time falls, commuters might sleep longer, take to the road in bunched manner (the 
perceived fast fill-up) and exacerbate the acuity of the super-peak, a desirable solution, not a problem to 
be implicitly regretted as in Dutzig et al. (2017); if it rises, they may have to sleep less and adjust the net 
moments of unreliability in the opposite direction through higher palliative safety margins. 
 
Car Trip Purpose Levels and Mix 

For a given demand time slot, the total utility variation resulting from increased lane capacity depends 
on changes, at equilibrium, in the first 4 moments of duration for trips for distinct purposes considered 
separately and summed, and not just on changed mean service time for all trip purposes together: trip 
purpose levels and mix affect the mean time. Valuation of moment changes (in any direction) from the 
initial to the new user situation will then be needed by trip purpose: one can make use of estimated MRS 
among them, expressed for instance per unit of the 1st moment, discussed presently.  
 
Substitution Among Moments of Duration Choices 

One finds in Table 9, for the 3 regions, marginal rates of substitution among the first three moments 
of duration , sm mMRS expressed per unit of the 1st moment and, in that sense, comparable across regions 
and markets. In the source papers, original tables also present elasticities of substitution among the 
moments, which are always well-behaved and consequently relatively uninteresting, as well as measures 
of fit by moment, as one can verify in Appendix 7 which gives those supplementary statistics for Parts A, 
B and C of Table 9. 

Concerning , sm mMRS estimates in Table 9, note that: (a) their signs are compatible with those of risk-
averse agents (matrix [A] in Table 2); (b) women tend to value the second moment more, and the third 
less, than men; (c) the greatest difference in valuations occurs between Greater Paris and the other two 
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regions; it pertains to the relative value of the second moment despite sensibly close elasticities of 
substitution of about 1.5-1.6 (cf. Appendix 7) across regions. Let us comment on the last two points. 

i. differences between men and women. Women make shorter commuting trips than men13, a 
bare fact repeated ad nauseam even by those who fail to provide any explanation for it (e.g. 
Ng & Aker, 2018), contrary to White (1977, 1986) who first tried to make sense of it. But by 
far the most serious analyses of the complex issues involved are those of Picard et al. (2013; 
2018) who, after controlling for various endogeneity biases and the effects of negotiations 
within couples, allow in their latter paper for comparisons of trip utility levels between men 
and women within a unified framework.  

 
TABLE 9 

WORK AND SHOPPING CENTRE (C.1) PC TRIP DURATION MOMENT 
MARGINAL RATES OF SUBSTITUTION 

 

 
 
With utility specifications of type (1-B)   except that their variables appear linearly  , they show that 

women dislike in-vehicle time by mode (including driving, then) much more than men (about 33% more) 
and that both sexes dislike driving alone much more than using transit (about 100% more), as one can 
verify in this table regrouping their latest, and most refined, results:  
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Pooled sample + households without a 
car Table 4 model Table 8 model Table 9 model 

(Negative) coefficient of travel time Man Woman Man Woman Man Woman 
                  -Public mass transit (PT) 1.54 2.27 1.54 2.35 0.83 1.10 
                   -Private car drive alone 
(PC)) 2.95 4.32 2.90 4.44 1.62 2.64 

ratio PC/PT 1.91 1.90 1.88 1.89 1.96 2.41 
 
The key point here is that differences in distances covered by sex, irrespective of mode, are explained 

by higher disutility per unit of mean travel time in women than in men. The previous literature on urban 
commuting gave that general impression but its results were often difficult to interpret because, in 
addition to endogeneity issues, trip distance, disutility per unit of distance and regression form (typically 
fixed14) were and remain always entangled. For instance, White (op. cit.) emphasized women’s shorter 
trip lengths, but not implied disutility per minute or mile as such. Our results in Tables 9 and 11, relating 
higher moments of travel time to its first, say nothing about the weights of a unit of the first by sex. 

This weight, in our model, is the partial derivative of the first moment of duration with respect to 
mean service, shown in the following table for distinct and pooled sex samples by mode. The comparison 
yields first indications consistent with a higher disutility of mean time in women than in men: at sample 
means, the partial derivative of ( )e y  with respect to mean network service is higher for women than for 
men by 7,3 % in PC and 9,1% in PT, as can be verified in this table: 

 
Mode Private car drive alone (PC) Mass public transit (PT) 

Sample Men Women Pooled Men Women Pooled 
Variant number in source paper III 22 35 13 17 31 8 

( )e duration mean service time * 0.82 0.87 0.84 -0.22 -0.24 -0.23 
*Derivatives evaluated at sample means. All specifications of (8-B) are for Case 3 optima defined in (8-D). 

 
Taking form into account in a formulation that neglects all endogeneity biases engendered within 

couples then apparently confirms the results obtained under linearity in the previous summary table (with 
those biases corrected): women dislike every minute of mean travel time more than men, independently of 
mode: measured with linear or Box-Cox forms, their marginal disutility of urban commuting travel time 
is just higher than that of men, which explains their famously shorter trips;  

ii. relative value of arrival at work on time. To understand why the valuation of the second 
moment would in the Greater Paris Region amount to half of that found in the US and in 
Metropolitan France, we hypothesize that socio-cultural importance of on-time arrival at 
work might differ between these three regions, an interpretation inspired by the examination, 
in the US, of revealed valuation differences between Whites and Blacks or Hispanics reported 
in Table 9. 

Results, shown in Parts B.1 and B.2 of that table, are consistent with the existence of cultural 
differences, in this case revealing Whites as stricter than Blacks and Hispanics on the importance of on-
time arrival at work represented by the relative value of the second moment. But if the risk of late arrival 
at work is linked instead to the relative value of the 3rd moment, Black or Hispanic women are those with 
the greatest relative valuation of the third moment and the “strictest” attitude among regions and groups, 
perhaps because of their types of jobs. This cultural hypothesis should be probed further with ethnic or 
international data and multiple types of jobs. 
 
On Shopping Trips 

The results for trips to shopping centers (“Grandes surfaces”) in Columns 7 and 8 of Table 8 and in 
Part C.1 of Table 9 must be affected by the small sample sizes (see Figure 4).  
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FIGURE 4 
DISTRIBUTION OF DRIVE ALONE TRIPS FOR SHOPPING PURPOSES, 

METROPOLITAN FRANCE (2008) 
 

 
 
Still, the latter reveal reasonably lower relative valuations of reliability moments , sm mMRS  than for 

work trips. Samples of trips to the doctor or the hairdresser were too small for many of the statistics to be 
reliably calculated and their exploratory results, listed in source paper II, are not reproduced here. 
 
On Regional Resemblances 

All in all, the analysis of car trips shows great structural similarities among the 3 regions at the same 
time as some differences reveal the sophistication of travellers’ trip planning. 

The available samples in Figure 3 are all markedly asymmetric and of similar sizes clearly adequate 
for regression work. But, as the US values pertain to large metropolitan areas, they are in principle closer 
to the Greater Paris area sample than to the sample for Metropolitan France, which includes many small 
cities or towns, as its 30% lower average mean trip times implies. In fact, the US and Paris samples have, 
for both men and women, uncannily similar structures, as Figure 5 makes even clearer than do the distinct 
Figure 3 graphs and moment statistics. 

 
FIGURE 5 

DRIVE-ALONE A.M. PEAK WORK CAR TRIP DURATIONS 
IN GREATER PARIS AND IN LARGE US STANDARD METROPOLITAN AREAS 

 

 
 
This remarkable basic fact has not prevented formal analysis of these durations from revealing 

statistically meaningful differences between them, either in the effects of service levels on duration 
choices or in their internal structures and in the MRS among the moments of duration. Both similarities 
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and differences concerning home-based work trips point to the importance of micro data by trip purpose, 
as opposed to city-wide averages, for the meaningful analysis of urban transport markets and policies in 
the future. 

Transit Trip Durations: Unit Elasticity Tests, Moment Demand Elasticities and MRS 
We used the mass transit data shown in Part D of Figure 3 for the Greater Paris Region, the only 

region to produce large enough mass transit use samples for work trips. This is partly due to our imposed 
requirement that, in the absence of face-to-face control interviews in US NPTS surveys, the retained 
traveler should always be the very person who answered by phone the relevant survey questions, which 
include those on journey departure and arrival times defining the dependent variable in (8-B). 

Establishing the Existence of the Precautionary Palliative Time margin 
Table 10 presents, like Table 8, selected model results: (i) the pair of BCT estimates (already 

commented on above) for trip duration and mean service variables; (ii) the 4 elasticities of the duration 
regressand with respect to mean service; (iii) t-statistics, unconditional for the two BCT form parameters 
and conditional on the BCT estimates for the k  regression coefficient of the service regressor variable. 

It has to be recalled from Table 6 that the average service variable in the equation explaining transit 
trips is represented by U, the denominator of a Standard strict utility Box-Cox Logit model explaining 
path shares pm defined in (1), to which the BCT power S U  is applied and which becomes a Logsum 

if 0U . As this RATP-produced measure is differently defined and more complex than the simple 
path time indicator used for Sp in all variants of Table 8 car trip duration models, transit duration 
elasticities will be of the opposite sign and their analytical expressions different. For instance the sample 
elasticity of duration for a particular trip with respect to its path service, which was straightforwardly 

yk

k kX y  (with ˆ 0k ) for car trips in Table 8, is now for public transit service a product of 
yU

k U y  (with ˆ 0k ), the elasticity with respect to the anti-Logsum variable U found in Table 10, 

by mk

k mk mX p , the elasticity of U with respect to in-vehicle time on path m. 
In short, we have a sign reversal (seen by comparing Table 10 with Table 8) and the sample elasticity 

where mkX  is attribute k (such as in-vehicle time) of itinerary m. The same holds for the 3 strict notions 
of elasticity: Table 10 only presents the first term of (10.ii) and never the required product15.  

is not anymore ( / yk

kX kX y ) 
(i), 

but [( / yU
UU y )( Xmk

kX mk mX p )] 
(ii), 
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TABLE 10 
ELASTICITIES OF PT TRIP DURATION W.R.T. MEAN SERVICE 

AND STUDENT’S t OF PARAMETERS, CASE 3 OF (8-D) 
 

Home-based mass public transit (PT) work 
trips Greater Paris Region 

(M= Men; W=Women): 1. M 2. W 
Variant run number in source paper tables 17 31 
Number of Xk variables except for 0   21 21 
Nomber of observations 979 1180 

BCT 

BCT estimates and their unconditional Student t 
statistics 

on Duration y   0.19 0.42 
Unconditional Student t (=0) (3.44) (14.07) 

on Service x   0.05 0.10 
Unconditional Student t (=0) (5.19) (7.93) 

Elasticity 
of duration 
with 
respect to 
endured 
Service U 
in Eq. (10) 

Casual sample elasticity of (y) as defined in Table 3 

( , )s k
k

k

Xyy X
X y

 -0,076 -0,100 

Student t (=0) conditional on 
BCT (-31.97) (-30.39) 

Strict elasticities of moments of (y) as defined in Table 3 
( )( , )

( )
e k

k
k

Xe yy X
X e y

 -0,081 -0,110 

( )( , )
( )

k
k

k

Xyy X
X y

 -0,065 -0,067 

( )( , )
( )

k
k

k

Xyy X
X y

 0,016 0,048 

Log-Likelihood (LL) Case 4 (Log-Log) -4039 -5027 
Log-Likelihood (LL) Case 3 (Box-Cox) -4014 -4909 

LL difference (2 degrees of freedom) 25 118 
Pseudo-(L)-R2 0.57 0.53 

 
When these calculations are done in source paper III, all elasticities, precisely estimated because the 

t-statistics of underlying service variable regression coefficients are equal to about 30, are again smaller 
than 1. In the upper ranges of path time values, elasticities of the first two moments are of the same order 
of magnitude as in Table 8 but skewness is slightly more sensitive to improved (or to worsened) service 
for transit trip durations than for car trip durations, especially for women. 
 
Improved Service and the Duration Choice Reliability Echo 

First, it should be noted that the optimal power of the U term in Table 10 is close to 0 but is in fact 
statistically different from it with values of 0.05 or 0.10. The Logsum is therefore rejected here, in favor 
of the simple sum with a BCT power parameter, as the most adequate summary of transit path service. 

The weakness of the elasticities of skewness relative to those of the first two moments again implies, 
as it did for car trips, that improved path service mkX  (requiring the minus sign) concentrates the time 
profiles of duration demand. The relevant expression is identical to (9-A): 
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( ( ), ) ( ( ), ) ( ( ), )n mk n mk n mke Dur X Dur X Dur X SUPERPEAK of kurtosis  (9-B) 

 
but this relative super-peak effect on kurtosis derived from Table 10 is a little weaker for transit services 
(even if women exert some particularly strong moderating influence through skewness) than it was for car 
services in Table 8. This increased 4th moment of the time profile of demand, or metronomic acuity effect, 
might sometimes pose capacity problems for transit planning (even at constant demand for the time 
period considered). Also, the decreased 2nd moment of improved transit services can still be said to imply 
fast fill-ups, as do new urban highways. 
 
Substitution Among Moments of Duration Choices 

Table 11 presents statistics on marginal rates of substitution among moments comparable to those 
found in Table 9, but in this case the additional information on elasticities of substitution and fits by 
moment have been kept.  

 
TABLE 11 

WORK PT TRIP DURATION MOMENT RATES 
AND ELASTICITIES OF SUBSTITUTION, CASE 3 OF (8-D) 

 
Mass public transit trips (PT) 

Rates & elasticities of substitution 
Greater Paris Region work trips 

Men (variant 17) Women (variant 31)
Moments i\j e e

,em mMRS , ,em mMRS  
,m mMRS  

Eq. (5-D.1) to (5-D.3) 

e 1 + 4.5  330 1 + 5.4  180 
  1  73  1  33 
  1  1 

,em m , ,em m  
,m m  

Eq. (5-D.1*) to (5-D.3*)* 

e 1 + 1.2  5.2 1 + 1.7  2.4 
  1  4.2  1  1.4 
  1  1 

Sample moment value 61 24 1.00 60 24 0.75 
Fitted value at the means 42 13 0.68 42 13 0.56 

Mean of fitted values 61 18 0.71 60 17  0.08 
* Defined in Appendix 7. 

 
Note that, although the marginal rates of substitution are extremely close to those of car trips (shown 

in Table 9 and Appendix 7), the PT elasticities of substitution between the first and the third moments 
shown in the bottom Part of Table 11 are roughly half of the size of the PC ones found in Appendix 7, 
namely (-5.2 ; -2.4) vs (-8.2 ; -4.1), as are those between the second and the third moments, namely (-4.2; 
-1.4) vs (-7.2 ; - 3.1), implying a greater sensitivity of trip planning responses in drivers despite similar 
valuations of time moments. 

Also, again, the higher the moment, the less well it is fitted if the fit is measured by the simplistic 
Fitted value evaluated at the means of all variables (at the bottom of Table 11). Clearly, reasonable 
indices of fit have yet to be developed for all moments in order to extend to higher moments than the first 
appropriate measures for nonlinear models in the spirit of the long-used Pseudo-(L)-R2 (Aigner, 1971, p. 
85-90) calculated in our tables. 
 
On Modal Resemblances 

All in all, results obtained for transit trips are extremely close to the results obtained for car trips in 
the Greater Paris Region and their small differences again show, if anything, the sophistication of 
travelers’ journey planning and time moment valuations. 
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Concerning car trips, we showed that network improvements apparently do little to speed commutes 
because they notably generate super-peaks that are part of the solution, not the problem as one 
simplistically assumes by wearing first-moment-of-travel-time-blinkers. The situation is identical here, in 
that transit improvements also increase the acuity of trip time distribution profiles, as travelers reduce 
precautionary margins. Bemoaning modal project effects, in witch-hunts for mean speed changes that 
ignore its higher (echo-generating) moments, commits a new “certain error of a mean”. 
 
CONCLUSION: ON STUDENTS COMMITTING A NEW “CERTAIN ERROR OF A MEAN” 
 
Safety Margins by Urban Home-Based Journey Market 

First, we have demonstrated that, given a chosen transport mode, any empirical telic urban trip 
duration T combines a planned palliative endogenous precautionary margin component I, a 
complementary offset to the uncertainty of the exogenous component, the expected endured network 
service time S. The existence demonstration of this inferred composition of terms, inspired by Frank 
Knight’s distinction between uncertainty and risk here applied to the margin and the expectation of 
endured travel service, relied on the estimation of an infra-unitary elasticity of duration with respect to 
service obtained from flexible form Box-Cox regressions explaining actual duration T by service S and 
other variables X. 

The elasticity test was readily passed by estimates secured from such duration demand equations by 
traveler sex for different modes (car drive alone; mass transit), trip purposes (work; shopping), regions 
(Greater Paris; large American Standard Metropolitan Areas; Metropolitan France) and US socio-cultural 
backgrounds (White; Black or Hispanic). For each such market, two broad sets of calculated derived 
results of interest have been focused on. 
 
Relative Moment Valuations  

In the first set of results, we extracted from explained endogenous durations T the marginal rates of 
substitution among their concatenated moments of various orders (no greater than the fourth, and all 
determinate in deference to Christian Berg’s indeterminacy finding), understood without formal proof to 
match Maurice Allais’ famous rates of substitution among all (determinate) moments of a random 
prospect with respect to the first. That is because we assume that T constructs reflect preferences for 
actual continuous distributions of trip time characterized solely by their empirical moments, without any 
resort to their exact analytical shape or even concern for their possible lack of unicity, a so-called 
Multiple Moment Dependent Utility (MMDU) modeling posture. 

The internal structure of such traveler-built multi-moment duration concatenations varies notably by 
market but they all reveal risk aversion and generally indicate that: (a) women tend to value the second 
moment more, and the third less, than men; (b) for work trips, the second moment is more valued in large 
US cities and in Metropolitan France than in the Greater Paris Region, a trade-off shown to be socio-
culturally sensitive and to imply locally different “fast fill-up” effects for new infrastructure; (c) trips to 
shopping centers reveal lower reliability moment valuations than work trips. 
 
Absolute Moment Demands and the Preference for Traffic Super-Peaks 

In the second set of results, the sensitivity of the constructed duration moment concatenations has 
been measured by derivatives (and elasticities) of the first three moments of durations T with respect to 
service S, first and foremost of the explanatory variables. As only its first moment is available here, 
duration moment responses to changes in mean service close the traffic model, originally built under the 
assumption of a certain distribution of home departure times, by modifying that continuous distribution 
profile. We hope to analyze duration reactions to higher moments of service when the data are available 
and expect results similar to those found for the mean. 

Currently, we find that improved mean origin-destination service (speed) reduces mean trip durations, 
but less than proportionately, through safety margin time adjustments and that these utility gains from 
mean travel time are always augmented by concomitant changes in the three higher time reliability 
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moments. They were here measured by elasticities, analytical (2nd and 3rd moments) or qualitative (4th 
moment). With shorter durations, users show up in bunched manner (the so-called fast fill-up effect) and 
push up the acuity, or “peakedness”, of the super-peak (a desirable metronomic effect) but slightly 
decrease prudence (a counter effect). If speed falls, the opposite occurs. Super-peaks are then not part of 
the problem but of the multi-moment demand solution and their suppression will fail, misconceived due 
to first-moment-of-travel-time-blinkers. But exactly how is a mean analysis certainly erroneous? 
 
New Student Error 

Again, mean service betterment shortens average trip duration and induces further reliability 
reactions. These jointly amount to a “reliability echo” boost, a new “error of a mean”, that differs across 
markets. Its role is ignored in project assessment studies based on Q&MTT models limited to first 
moment time effects analyzed only on aggregate flows, without due concern for the multi-moment 
composition and mix of trips that are quite distinct by purpose and traveler market. 
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This teaching note provides a senior undergraduate level primer on a recent stream of technical 
microeconomic analyses, all pertaining to home-based daily urban trips in France and in the United States 
of America, carried out for and financed by the Société du Grand Paris (SGP) in charge of the ongoing 
construction of the Grand Paris Express (GPE) consisting in 200km of additional automated metro lines 
and 68 stations in the Greater Paris Region. It draws extensively from these source analyses, based on 
publicly available American or French databases and all written during the academic years 2015-2016 to 
2017-2018, to summarize them and their core implications, relegating to appendices the most complex 
formulas found in the sources themselves or in the TRIO L-1.6 regression program manual used to obtain 
reported parameter estimates. The source documents, all public and freely downloadable from the Agora 
Jules Dupuit and/or ResearchGate sites, can serve as complementary course readings. They could not 
have been produced without the close institutional collaboration of the Régie autonome des transports 
parisiens (RATP) and the personal involvement over time of key individuals, notably of Vincent 
Leblond, Benjamin Cuiller and Ralf Klar for the first tier, and of co-author Julien Gaudremeau for the last 
tiers of papers. Recent prompts to produce an introductory summary in French have notably come from 
Oliver Paul-Dubois-Taine and Émile Quinet, to whom this successor document in English, aimed also at 
transport analysts, owes much. 
 
ENDNOTES 
 

1. Abraham formulated the problem of the binary choice probability between alternatives described by utility 
functions with errors and then derived a Probit under the assumption of their Normal distributions and the 
Linear Probability model under that of their Rectangular distributions. McFadden repeated these steps 11 
years later and added derivations of the Logit from independent Weibull distributions and of the Arctan 
from Cauchy distributions of the same utility function errors. 

2. Koenig (1974, 1975) first showed that the logarithm of its denominator, or Logsum, denotes the average 
utility of the pi.  

3. If y is normally distributed and 0 , the distribution of y  is determinate for 0 4  and 

indeterminate for 4 . That demonstration by the author must also hold for 
( )y , at least with 

0 4  and perhaps even with BCT 0 4 , the BCT being applied only to strictly positive y 
samples, as done below in (6-A).  

4. Declared by Jean-Martin Charcot in his lectures between October 13, 1885 and February 28, 1886, dates of 
Sigmund Freud’s stay in Paris and attendance of Charcot’s lectures. Freud quoted this statement by 
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Charcot, made in response to a student claiming that a particular theory ruled out the possibility of one of 
Charcot’s claims, numerous times and notably in his eulogy of Charcot in 1893 (Freud, 1984, p. 23).  

5. If the function f in (4-A) is additive, the duration concatenation 1 2 3

ˆ ˆ ˆˆˆ ˆ( ) ( ) ( )
n n n

r e T r T r T  may be viewed 

as a joint choice of ( ( )

ˆ
e n

d = ( ) ( )ê n e n
t t ), ( ( )

ˆ
n

d = ( ) ( )

ˆ
n n

t t ) and ( ( )

ˆ
n

d = ( ) ( )

ˆ
n n

t t ), with Allais’ r(y) valuation 
weights applied.  

6. Ekelund & Hébert (1999) suspect that Marshall’s use of the sample notion in his Principles of Economics 
of 1890 was a case of plagiarism by an author very familiar with French ENPC authors and even quoting 
Dupuit. Should his then faked story of an inspired ! wake-up in the middle of the night in a Palermo 
hotel count towards the “Entente cordiale”?  

7. As documented in the program manual of the method we purport to use (Tran et al. 2008, Section 2.5), this 
surprise can be partly understood by noticing that any effect on a given moment mechanically implies 
structured effects on higher moments because, once ( )

k
ye X  is known, it is easy to deduce ( )

k
y X and 

( )
k

y X  with Jacobians of transformations from one moment to the next.  
8. In Box-Cox regression, the residual cannot be strictly normally distributed because y must be strictly 

positive. Should one then specify a weighted Likelihood function to take the probability to be below the 
lower limit (and symmetrically for the upper limit) into account? No: macroeconomic models explaining 
national GNP components C, I or G should not be rejected on the grounds that their errors cannot be strictly 
normally distributed. Consequently, our algorithm is constructed in the following way: (i) one first assumes 
normality and the a priori absence of limit observations, in which case the Likelihood function of the two-
limit Tobit specified by Rosett & Nelson (1975) reduces to that of Box & Cox (1964) themselves; (ii) one 
then verifies ex post the reasonableness of the latter assumption by calculating an index of the probability 
(see Appendix 1, Part III, line 3 of source paper IV) of each fitted value to be at the limits � and � (defined 
by the user) as recommended by Olsen (1978) on the lines of remarks by Draper & Cox (1969) on this 
point.  

9. It is possible, in certain circumstances, to apply a BCT to an Xk containing zeroes, as we do in the source 
papers.  

10. Tobin’s original formulation (Tobin, 1958) had different limits across observations. It does not require that 
the sample actually contain limit observations: our Likelihood function formulation assumes none are 
present.  

11. The application of OLS in Case 1 involves no transformation of y. If it is transformed, only the intercept is 
rescaled.  

12. A Normal law has 2 parameters (mean and variance) but the Poisson law has only one due to the equality 
constraint (mean of y) = (variance of y). The general heteroskedasticity formulation that allows to impose 
the Poisson restriction on our model (6-A) requires an additional equation for the heteroskedasticity of wt 
(cf. the discussion in Gaudry & Dagenais, 1979, or the program manual by Tran et al., 2008), not shown 
here, as demonstrated by Fridstrøm (1999, 2000). 

13. Censuring short trips, as in Figure 3, to limit the effect of rounded stated departure and arrival times, makes 
women’s trip durations closer to men’s than they are when all trips are shown (e.g. Picard et al., 2013, 
Table 1, for both modes). 

14. This includes Small et al. (2005) who note women’s preference for tolled highway options, as opposed to 
free ones, a result consistent with their stronger dislike of driving than men. 

15. It is calculated in source paper III for two reference path times (36,6 and 12,2 minutes) and, to compute U, 
with the coefficient of in-vehicle time from the RATP 6-path model ( -0,22), with in-vehicle time at 24,4 
minutes and out-of-vehicle time at 27,5 minutes (both obtained from transit assignments). 
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APPENDIX 1. ANALYTICALLY DEFINED MOMENTS OF A RANDOM VARIABLE 
 

TABLE 12 
DEFINITONS OF THE FIRST AND OF THE NEXT THREE 

CENTRAL MOMENTS OF A RANDOM VARIABLE y 
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APPENDIX 2. CONCATENATION OF TRIP TIME MOMENT DEMAND SCHEDULES 
 

FIGURE 6 
DURATION DEMAND, A VERTICAL CONCATENATION OF 

MOMENT OF TIME DEMAND SCHEDULES 
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APPENDIX 3. ELASTICITY NOTIONS FOR CONTINUOUS AND DUMMY VARIABLES 
 

TABLE 13 
FOUR NOTIONS OF THE ELASTICITY  OF y WITH RESPECT TO A CONTINUOUS  

OR A DUMMY VARIABLE kX  

 
  



226 Journal of Strategic Innovation and Sustainability Vol. 15(1) 2020 

APPENDIX 4. ANALYTICAL DERIVATIVES OF MOMENTS OF y IN BOX-COX MODEL (7)  
 

TABLE 14 
BOX-COX MODEL DERIVATIVES OF MOMENTS OF yt WITH RESPECT TO Xkt, 

WITH SPHERICAL* wt ERRORS 
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APPENDIX 5. US STANDARD METROPOLITAN AREAS (SMA) WITH AT LEAST 3 

M  I   2009 
We selected trips from Standard Metropolitan Areas (SMA) of at least 3 million inhabitants, as 

indicated by membership of SMA size class 5 in the NPTS 2009. These SMA correspond to the following 
Consolidated Metropolitan Statistical Areas (CMSA): 

Atlanta, GA Miami--Fort Lauderdale, FL  
Boston--Worcester--Lawrence, MA--NH--
ME--CT  

New York--Northern New Jersey--Long Island, NY--
NJ--CT--PA 

Chicago--Gary--Kenosha, IL--IN--WI 
Philadelphia--Wilmington--Atlantic City, PA--NJ--DE-
-MD

Dallas--Fort Worth, TX Phoenix--Mesa, AZ 
Detroit--Ann Arbor--Flint, MI  San Francisco--Oakland--San Jose, CA  
Houston--Galveston--Brazoria, TX Seattle--Tacoma--Bremerton, WA
Los Angeles--Riverside--Orange County, CA Washington--Baltimore, DC--MD--VA--WV  
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APPENDIX 6. NEIGHBORHOOD OF THE LOG-LIKELIHOOD MAXIMUM (USA)  
 

To verify that the high elasticity values (0,87 and 0,91) for the USA in Table 8 are really smaller than 
1, examine in Figure 7 the behavior of the maximized Log-Likelihood (LL) value and of s  ( e ) in the 
domain defined by 1/3 x 2/3 and 0 y 2/3 in the neighborhood of the highest LL value, a domain 

enclosing the maximum for men ( 0, 26y ; 0,32x ) and women ( 0,36y ; 0, 46x ).  
 

FIGURE 7 
WORK TRIP LOG-LIKELIHOOD AND SAMPLE SERVICE ELASTICITIES 

IN THE NEIGHBORHOOD OF THE MAXIMUM (USA) 
 

 
 
Remember also that a wider domain including negative values of y  would be irrelevant because, in 

(6-F), ( )r
tE y  does not then exist when, with 0 and v , one approaches limit values for 

observations. Figure 7 confirms that the two maxima of the LL for the USA are indeed global and that 
there exists in their neighborhoods no tendency for elasticities to approach unity even if, at 0y  (where 

0,33x ), the elasticity values rise somewhat to 0,93 for men and 0,89 for women. This is not 

surprising, in view of asymptotic Student t-values equal to 100 for their underlying k  coefficients, 
calculated here by the method of first derivatives of Berndt et al. (1974).  
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APPENDIX 7. MORE INFORMATION ON PC DURATION MOMENT RESULTS 
 
The source papers present information to complement that found in Table 9 on MRS among 

moments. Firstly, elasticities of substitution among them and secondly measures of fit for the moments 
defined in equations (6-C), (6-D) and (6-E). Both sets are found in this enriched version of Table 9: 

 
TABLE 15 

WORK TRIP DURATION MOMENT RATES AND ELASTICITIES OF SUBSTITUTION BY 
REGION, CASE 3 OF (8-D) 

 

 
 
Elasticities of Substitution 

To avoid dealing with units of MRS measures in (5-D.1)-(5-D.3), one may instead use elasticities of 
substitution , , ( 1,3),sm m for s  namely (5-D.1*)-(5-D.3*), all pure numbers equal to the MRS 
multiplied by matching inverses of moments, evaluated below at sample means of variables. The 
corresponding expressions are as follows: 
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Higher Moments than the First 

Concerning fit statistics at the bottom of each Part of Table 15, note that the first sample moment is 
better adjusted than the second, itself being better adjusted than the third. This no doubt occurs because 
model construction is guided by intuition of first moment response: indeed, how many ever add an 
explanatory variable to specifically improve 3rd moment fit? Few indeed  perhaps because current 
measures of model fit tend to be based only on calculated first moment measure analogs of R2 and neglect 
higher moment fit statistics such as those calculated here. 
 


